NMRlab
  • Login & order NMR service now
  • NMR service
    Login & order NMR service now NMR service NMR chromatography service Why use our superior service Contact us The NMR team How to submit samples Use the instruments yourself Terms & conditions
  • (Hg) Mercury NMR
    (Hg) Mercury NMR 199Mercury NMR Properties of 199Hg 201Mercury NMR Properties of 201Hg Safety note References
  • NMR
    Go to home page What is NMR Techniques Apps Guides Contact us
  • עברית
  • HU NMR lab
  • Login & order NMR service now
  • NMR service
    Login & order NMR service now NMR service NMR chromatography service Why use our superior service Contact us The NMR team How to submit samples Use the instruments yourself Terms & conditions
  • (Hg) Mercury NMR
  • 199Mercury NMR
  • Properties of 199Hg
  • 201Mercury NMR
  • Properties of 201Hg
  • Safety note
  • References
  • What is NMR
    What is NMR Uses of NMR Basis of NMR Chemical shift Spin-spin coupling
  • Techniques
    Techniques 1H NMR 2D NMR Relaxation Multinuclear Semi-solids Solid state
  • Apps
    Apps Solvent shifts NMR thermometer Reference frequency
  • Guides
    Guides Measuring a 1H spectrum on the old 500 Measuring a 1H spectrum Measuring other nuclei Measuring 2D NMR Measuring diffusion Measuring relaxation Measuring solid & semi-solid
  • Contact us
  • Terms & conditions
  • עברית

(Hg) Mercury NMR

Use our NMR service that provides 199Hg NMR and many other NMR techniques.

Mercury (Hg) has two NMR active nuclei, 199Hg and 201Hg. 199Hg is a low sensitivity spin-½ nucleus that yields sharp signals over a very wide chemical shift range. 201Hg a quadrupolar low sensitivity nucleus that yields signals too broad to be observed with a high-resolution NMR spectrometer even for small molecules such as dimethyl mercury. Therefore, 199Hg is the mercury nucleus of choice. 199Hg-NMR is used for the study of mercury compounds, their structure, dynamics and conformation. It is also used for biological binding studies using its relaxation effects.

Each type of mercury compound has its characteristic chemical shift range (fig. 1).

Fig. 1. Chemical shift ranges for mercury NMR

Chemical shifts of mercury

199Mercury NMR

199Hg yields sharp signals (fig. 2) and is more sensitive than 201Hg. Therefore 199Hg is the mercury nucleus of choice.

Fig. 2. 199Hg-NMR, proton decoupled, of Me2Hg (neat)

199Hg spectrum

199Hg couples with many nuclei. Two-bond 1H-199Hg couplings are between 100 and 270 Hz (figs. 3 and 4). One-bond couplings to 13C are between 600 and 3000 Hz (figs. 5 and 6), two-bond from 70 to 130 Hz and three-bond 100 to 220 Hz.

Fig. 3. 199Hg-NMR of Me2Hg (neat) showing proton coupling

199Hg spectrum coupled to proton

Fig. 4. 1H-NMR of Me2Hg (neat) showing coupling to 199Hg

1H spectrum coupled to 199Hg

Fig. 5. 199Hg-NMR of Me2Hg (neat) showing coupling to 13C

199Hg spectrum coupled to 13C

Fig. 6. 13C-NMR of Me2Hg (neat) showing coupling to 199Hg

13C spectrum coupled to 199Hg

Properties of 199Hg

(Click here for explanation)

PropertyValue
Spin1/2
Natural abundance16.87%
Chemical shift range3500 ppm, from -3000 to 500
Frequency ratio (Ξ)17.910822%
Reference compoundMe2Hg (neat)
Linewidth of reference2.6 Hz
T1 of reference0.5 s
Receptivity rel. to 1H at natural abundance1.00 × 10-3
Receptivity rel. to 1H when enriched5.93 × 10-3
Receptivity rel. to 13C at natural abundance5.89
Receptivity rel. to 13C when enriched34.9

201Mercury NMR

201Hg is a quadrupolar nucleus that yields signals too broad cannot be observed on a high resolution NMR spectrometer even for small molecules such as Me2Hg. 201Hg is also less sensitive than 199Hg. Therefore, 201Hg is not the mercury nucleus of choice for NMR. Because it is unobservable, we have no useful experience of 201Hg-NMR in our laboratory.

Properties of 201Hg

(Click here for explanation)

PropertyValue
Spin3/2
Natural abundance13.18%
Chemical shift range3500 ppm, from -3000 to 500
Frequency ratio (Ξ)6.611583%
Reference compoundMe2Hg (neat)
Linewidth of reference>40000 Hz
T1 of reference<0.00002 s
Receptivity rel. to 1H at natural abundance1.97 × 10-4
Receptivity rel. to 1H when enriched1.49 × 10-3
Receptivity rel. to 13C at natural abundance1.16
Receptivity rel. to 13C when enriched8.80
Linewidth parameter2000 fm4

Safety note

Some of the materials mentioned here are very dangerous. Ask a qualified chemist for advice before handling them. Qualified chemists should check the relevant safety literature before handling or giving advice about unfamiliar substances. NMR solvents are toxic and most are flammable. Specifically, mercury salts are very toxic: wear protective gloves and work in a hood. Dimethyl mercury and other organomercuries are very toxic (LD50 Me2Hg, 0.1 mL!): wear protective clothing and work in a hood. Latex gloves do not provide protection. Highly resistant laminate gloves (SilverShield or 4H) should be worn under a pair of long-cuffed, unsupported neoprene, nitrile, or similar heavy-duty gloves. One drop can kill.

References

  • V. S. Petrosyan, and O. A. Reutov, "Study of the structure and complexation of organic and inorganic derivatives of metals by means of NMR spectroscopy of heavy nuclei", Pure Appl. Chem., 37, 147-59 (1974).
  • M. Borzo and G. E. Maciel, "Mercury-199 chemical shifts of organomercury compounds by Fourier transform NMR", J. Magn. Reson., 19, 279-282 (1975).
  • N. K. Wilson, R. D. Zehr and P. D. Ellis, "Carbon-13 nuclear magnetic resonance. Carbon-13 chemical shifts and carbon-13-mercury-199 coupling constants for some organomercury compounds", J. Magn. Reson., 21, 437-443 (1976).
  • J. L. Sudmeier and T. G. Perkins, " Studies of single 199HgII ion resonances in the active site of human carbonic anhydrase B by Fourier transform nuclear magnetic resonance", J. Am. Chem. Soc., 99, 7732-7733 (1977).
  • A. J. Canty, A. Marker, P. Barron and P. C. Healy, "A mercury-199 NMR spectroscopic study of two- and three-coordinate methylmercury(II) complexes, [MeHgL]NO3", J. Organometal. Chem., 144, 371-379 (1978).
  • Y. A. Strelenko, Y. G. Bundel, F. H. Kasumov, V. I. Rozenberg, O. A. Reutov and Y. A. Ustynyuk, "σ,π,-Conjugation and mercury-199 shielding constants in benzyl derivatives of mercury", J. Organometal. Chem., 159, 131-135 (1978).
  • M. J. Albright and J. P. Oliver, "Studies on main group metal-transition-metal bonded compounds. 7. A mercury-199 NMR study of some Group VI transition-metal mercury compounds", J. Organometal. Chem., 172, 99-107 (1979).
  • R. Colton and D. Dakternieks, "Phosphorus-31 and mercury-199 NMR studies on mercury (II) halide-tributylphosphine complexes", Aust. J. Chem., 33, 955-963 (1980).
  • R. Meyer, L. Gorrichon-Guigon and P. Maroni, "Carbon-13 and mercury-199 NMR study on oxobromo- and dioxomercuric compounds", J. Organometal. Chem., 188, 11-24 (1980).
  • M. F. Roberts, D. A. Vidusek and G. Bodenhausen, "Adducts of ethylmercury phosphate with amino acids studied by indirect detection of mercury-199 NMR", FEBS Lett., 117, 311-314 (1980).
  • P. R. Wells and D. W. Hawker, "Mercury-199 NMR chemical shifts in substituted diphenylmercury and phenylmercuric chloride", Org. Magn. Reson., 17, 26-27 (1981).
  • M. J. Albright, T. F. Schaaf, A. K. Hovland and J. P. Oliver, "Metal-silicon bonded compounds. XVIII. A mercury-199 FT NMR study of some silylmercury derivatives and selected organomercury compounds", J. Organometal. Chem., 259, 37-50 (1983).
  • A. M. Bond, R. Colton, M. L. Dillon, J. E. Moir and D. R. Page, "Investigation of exchange and redox reactions of mercury dithiocarbamate complexes by electrochemical techniques at mercury electrodes, mercury-199 nuclear magnetic resonance spectrometry and mass spectrometry", Inorg. Chem., 23, 2883-2889 (1984).
  • A. R. Norris and R. Kumar, "Mercury-199 NMR correlations in methylmercury(II) complexes of nucleic acid constituents and their analogs", Inorg. Chim. Acta, 93, L63-L65 (1984).
  • P. A. W. Dean and R. S. Srivastava, "A multinuclear (proton, phosphorus-31, mercury-199) nuclear magnetic resonance study of some complexes of mercury (II) with ditertiary phosphines", Can. J. Chem., 63, 2829-2839 (1985).
  • K. E. Rowland and R. D. Thomas, "Carbon-13 and mercury-199 NMR data for methyl-substituted diarylmercury compounds", Magn. Reson. Chem., 23, 916-919 (1985).
  • G. B. Deacon, M. J. O'Connor and G. N. Stretton, "Organomercury compounds. XXVIII. The synthesis and mercury-199 NMR spectra of some unsymmetrically dimercurated arenes", Aust. J. Chem., 39, 953-962 (1986).
  • B. F. Abrahams, M. Corbett, D. Dakternieks, R. W. Gable, B. F. Hoskins, E. R. T. Tiekink and G. Winter, "NMR studies of phosphine adducts of mercury and cadmium xanthates and halo xanthates. Crystal and molecular structures of Cd(S2COPr-iso)2PPh3, Hg(S2COPr-iso)2PPh3 and Hg(S2COPr-iso)2P(c-C6H11)3 (c-C6H11 = cyclohexyl)", Aust. J. Chem., 39, 1993-2001 (1986).
  • L. V. Pankratov, I. M. Penyagina, L. N. Zakharov, M. N. Bochkarev, G. A. Razuvaev, Y. K. Grishin, Y. A. Ustynyuk and Y. T. Struchkov, "Reactivity of germylmercurate complexes", J. Organometal. Chem., 335, 313-322 (1987).
  • M. M. Kubicki, J. Y. Le Gall, R. Pichon, J. Y. Salaun, M. Cano and J. A. Campo, "95Mo and 199Hg NMR studies on complexes containing molybdenum-mercury bonds and substituted cyclopentadienyl ligands: [(C5H5-nRn)(CO)3Mo]xHgX2-x (R = Me, n = 0, 1, 4, 5; R = Ph, n = 4; X = Cl, Br, I; x = 1, 2)", J. Organometal. Chem., 348, 349-356 (1988).
  • M. Delnomdedieu, D. Georgescauld, A. Boudou and E. J. Dufourc, "Mercury-199 NMR. A tool to follow chemical speciation of mercury compounds", Bull. Magn. Reson., 11, 420 (1989).
  • M. Delnomdedieu, A. Boudou, D. Georgescauld and E. J. Dufourc, "Specific interactions of mercury chloride with membranes and other ligands as revealed by mercury – NMR", Chem. Bio. Interact., 81, 243-269 (1992).
  • M. Cano, J. A. Campo, J. Y. Le Gall, R. Pichon, J. Y. Salaun and M. M. Kubicki, "Molybdenum- mercury bond. NMR (mercury-199, phosphorus-31, proton) and IR study on [(C5H5)(CO)2LMoHgZ] [L = P(4-XC6H4)3 (X = F, Cl, Me, OMe), P(CH2CH3)3, P(CH2CH2CN)3; Z = Cl, I, (C5H5)(CO)2LMo] complexes", Inorg. Chim. Acta, 193, 207-212 (1992).
  • L. Yang, J. Chen, X. Lei, Y. Wu and M. Song, "Substituent effect on mercury-199 chemical shifts in some bisarylmercurials and aryl(2-benzothiazolylthio)mercurials", Chem. Res. Chin. Univ., 8, 81-83 (1992).
  • X. Yang, Z. Zheng, C. B. Knobler and M. F. Hawthorne, "Anti-crown" chemistry: synthesis of [9]mercuracarborand-3 and the crystal structure of its acetonitrile complexes", J. Am. Chem. Soc., 115, 193-195 (1993).
  • Y. K. Grishin, V. V. Orlov, G. A. Artamkina and Y. A. Ustynyuk, "Mercury-199 nuclear magnetic shielding constants of benzyl mercury derivatives", Zh. Organich. Khim., 30, 1601-1607 (1994).
  • Y. J. Wu, S. Q. Huo, H. Z. Yuan and Y. H. Liu, "Secondary interaction and n-π conjugation in ferrocenylimine derivatives of mercury as probed by Hg-199 NMR", Main Group Chem., 1, 253-256 (1996).
  • A. Berra, M. L. Di Vona, B. Floris and S. Licoccia, "199Hg NMR: a tool for direct detection of the products from acetoxymercuration of alkynes", Appl. Organometal. Chem., 14, 565-569 (2000).
  • F. S. H. Vieco, N. M. Hiramatsu, E. Tedeschi, D. B. Rezende and I. P. A. Campos, "The γ-cis effect in the mercury-199 NMR spectroscopy of substituted vinylmercury halides", J. Chem. Res., Syn., 25-27 (2002).