Ab initio study of styrene and β -methyl styrene in the ground and in the two lowest excited singlet states

Shmuel Zilberg and Yehuda Haas

Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University of Jerusalem, Jerusalem, Israel 91904

(Received 13 December 1994; accepted 28 March 1995)

The structure and vibrational frequencies of styrene and *trans*- β -methyl styrene in the lowest three singlet states $(S_0, S_1, \text{ and } S_2)$ have been calculated using *ab initio* quantum chemical methods. The frequencies are compared with experimental data obtained in the bulk and in a supersonic jet. The calculation shows that in the ground state the molecules have a broad shallow potential as a function of the torsional angle, are essentially planar, but may be slightly bent. In the S_1 and S_2 states, the molecules are planar; In S_1 , the main structural change is in the aromatic ring, that is somewhat expanded. In S_2 , the C=C vinyl double bond elongates, while the C1-C α single bond becomes shorter, bringing these two bonds to almost equal length. Correlation diagrams connecting ground state vibrational modes with ones belonging to electronically excited states are given; they show that for many out-of-plane modes the vibrational frequencies decrease upon electronic excitation. This is accounted for in terms of the changes in the π electron distribution taking place upon optical excitation that result in decreasing the force constants characterizing these vibrations. The frequencies of most in-plane modes change very little, but mixing between S_0 modes is indicated in some cases, and a few vibrations, among them a Kekulé-type mode, undergo considerable change. The relation to the spectroscopy of the corresponding transitions in benzene is briefly discussed. © 1995 American Institute of Physics.

I. INTRODUCTION

Ab initio quantum chemical (QC) methods are increasingly being used to calculate the properties of molecules in their electronically excited states. Self-consistent field (SCF) methods are widely used to study the electronic ground state potential surface, but their application to excited states is hampered by the fact that the wave function tends to converge to ground state geometry in the energy optimization process (see, e.g., Ref. 1). Several schemes have been recently developed to allow approximate solutions to the problem. Robb and co-workers have used the complete active space SCF (CASSCF) method to calculate the properties of electronically excited benzene² and other molecules. Pople and co-workers³ propose the configuration interaction singles (CIS) as a viable means for electronically excited states calculations. In this approximation the excited state wave functions are written as a linear combination of all possible singly excited configurations. In contrast to CASSCF, which is computationally expensive, the CIS method is relatively simple and may be applied more easily using large basis sets. It has been used to calculate the properties of molecules such as ethylene,⁴ butadiene and bicyclobutane,⁵ hexatriene,⁶ benzene,⁷ and others. Double and triple excitation [implemented in various configuration interaction schemes such as OICSD and OICSD(T) have been used to improve the accuracy of the computations,^{8,9} but they become very computationally expensive when applied to large molecules, and at the moment do not seem to be feasible for conveniently treating molecules as large as styrene.

High resolution fluorescence excitation and resonant enhanced multiphoton ionization (REMPI) have been used over the last 20 years to obtain detailed information on the vibrational structure of electronically excited states of many molecules in a supersonic jet environment. The extreme cooling made possible by this method essentially eliminates hot bands from the fluorescence (or MPI) excitation spectrum, simplifying the analysis considerably. Another low temperature method that is widely used—matrix isolation spectroscopy—also provides a wealth of information on the vibronic structure of electronic transitions of large molecules.

The calculation of vibrational frequencies traditionally relies on consistent force field methods,¹⁰ using empirically optimized parameters. Application of these methods to electronically excited states requires the development of a suitable set of parameters, a task that has yet to be accomplished. Many vibronic structure analyses rely on comparisons with the ground state's frequencies and the usual spectroscopic methods such as isotopic substitution.

Ab initio QC methods are being increasingly used to calculate the vibrational modes of polyatomic molecules in the ground electronic, the required programs being commercially available (e.g., Gaussian, Ref. 11). For electronically excited states, only a few examples of ab initio vibrational analysis are available (see Ref. 12 and references therein) and a more commonly used approach utilizes semiempirical methods. The latter are open to criticism, since they require the use of parameters that are often derived from, and optimized for, ground state properties. Recently, we presented an analysis of the vibronic structure of the $S_0 \leftrightarrow S_1$ transition of anthracene.¹² In that case it turned out that a single configuration was sufficient to account for many properties of the features of the S_1 state; in particular, the calculated vibrational frequencies were found to be in very good agreement with the experimental ones. In contrast, it has been shown¹³ that for the S_1 state of other molecules such as benzene or naphthalene, several configurations are required.

In this paper we present an *ab initio* study of styrene (STY) and of *trans-\beta*-methyl styrene (BMS), whose fluorescence excitation and emission spectra have been recently recorded in our laboratory.^{14,15} The low lying electronic states of styrene, which is the simplest molecule containing both an aromatic ring and a double bond, have been extensively studied experimentally¹⁶⁻²⁰ and theoretically.²¹⁻²⁵ Experimental data based primarily on UV spectroscopy indicate that the molecule is planar in both the ground and the first electronically excited singlet states. The small dipole moment of styrene made the measurement of the microwave spectrum extremely difficult. It was first reported in 1988,²⁰ using a pulsed Fourier transform spectrometer. The planarity of the molecular structure of styrene was conclusively established, and a structure, based on *ab initio* calculations,²¹ was found to be compatible with the measured rotational constants.

Considerable effort has been invested in elucidating the correct form of the torsional potential around the C1—C α bond (see Fig. 1 for notation). It is now accepted that this potential is very shallow in S_0 , and much steeper in S_1 ; Hollas and co-workers have given a complete analysis of the emission spectrum, and fitted the data to an empirical potential of the form $V(\phi) = \sum_i (V_i/2)(1-\cos n\phi)$ (*n* runs over even integers only). The contribution of the *n*=4 term was found to be significant, and the potential is essentially flat in the $-20^{\circ} < \phi < 20^{\circ}$ range.¹⁶ A recent similar analysis for BMS shows that in fact a small barrier exists in this molecule at $\phi=0^{\circ}$, so that this molecule is slightly twisted in the ground electronic state.²⁶

The dipole moment of the $S_0 \rightarrow S_1$ transition in styrene lies in the molecular plane and is long axis polarized²⁷ in contrast with the short axis polarization of many other substituted benzenes. All observed vibronic bands are of a' symmetry in C_s (in plane), and the vibronic intensity distribution is essentially determined by the Franck-Condon overlap factors. Therefore, the out-of-plane modes (a'' in C_s symmetry) are observed only in even combination bands. Hollas and co-workers^{18,19,28} reported considerable Duschinsky mixing between the two lowest frequency out-of-plane modes $\nu_{41}^{"}$ and ν_{42}'' .²⁹ They found that in S_1 there is a large increase in mode v_{42} frequency as compared to the ground state, and a large decrease in v_{41} and assigned a frequency interval of 186 cm⁻¹ to the former (as compared to 38 cm⁻¹ in the ground state) and of 97 cm⁻¹ to the latter (199 cm⁻¹ in S_0). Hemley et al., 22,23 based on a PPP calculation, reversed the assignment.

Many theoretical calculations of the structure of styrene in both S_0 and S_1 states have been published. The ground state was invariably found to be bent, with an equilibrium torsional angle of $15^{\circ}-20^{\circ}$.^{24,25,30} Head-Gordon and Pople²⁴ found that the torsion barrier is very small (0.04 kcal/mol) at the HF/6-31G* level of theory, and *increased* to 0.21 kcal/ mol at a higher level (MP2/6-311G**//HF/6-31G*). All calculations agree that the torsional potential is very flat,²⁵ and that the molecule is essentially planar in the ground state. In the excited state, the molecule was found to be strictly planar by both semiempirical^{22,23} and *ab initio* calculations^{31,32} with

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

FIG. 1. The atom numbering convention for styrene and BMS.

a fairly deep well in the torsional degree of freedom.

In this paper we present an *ab initio* calculation of the vibrational levels of styrene, some of its isotopomers, and BMS in the ground state, obtaining very good agreement with experimental results. The calculation was extended to the first and second excited singlet states, S_1 and S_2 , in the case of styrene and of BMS. The latter molecule was studied in order to assign the jet cooled fluorescence excitation and emission spectra reported in the companion paper.¹⁵ The structures of these molecules and the atom numbering convention are shown in Fig. 1.

The excited states were studied using the configuration interaction singles (CIS) method,³ with full optimization of the geometry. Hemley *et al.*^{22,23} showed that there is only a small contribution from doubly excited configurations to the wave functions of S_0 and S_2 in their PPP and complete neglect of differential overlap (CNDO) studies of the molecule. For S_1 , two singly excited configurations were found to contribute significantly, and in addition, a small but nonnegligible contribution of two doubly excited configurations was required to reproduce the correct level ordering and the small oscillator strength of the $S_1 \leftrightarrow S_0$ transition. Starting with the computationally convenient CIS method, we show in this paper that the vibrational levels of the S_1 and S_2 states can be reasonably well calculated, and that the changes in vibrational mode frequencies can be related to the electronic structure of the excited states.

II. COMPUTATIONAL DETAILS

Calculations were performed using the GAUSSIAN 92 program package,¹¹ run on a Silicon Graphics Indigo R4000/ 48MB/2GBHD work station. The ground state (S_0) calculations were performed at the HF/4-31G level of theory, while for S_1 and S_2 we used the configuration interaction singles (CIS) procedure,³ also using the 4-31G basis set.³³ In this procedure, all singly excited configurations are considered, and it turned out that for both molecules the dominant contribution in the case of S_2 comes from the configuration due to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) excitation. For the S_1 state, the main contribution comes from two configurations, arising from a single electron excitation from the HOMO-1 orbital to the LUMO one, and from the HOMO to the

21

LUMO+1. As shown in previous *ab initio*³¹ and semiempirical calculations,^{22,23} singly excited configurations alone do not reproduce the correct excited states level order, while the addition of doubly excited configurations sufficed to reconstruct it. Upon applying a MP2 correction to the CIS/4-31G calculation, we found that the correct level ordering was obtained, as judged by the magnitude of the oscillator strengths for the S_0 to S_i transitions. The vibrational calculations (normal modes shapes, force constants and frequencies) were performed at the HF and CIS levels, respectively, for the ground and excited states.

In all computations, no constraints were imposed on the geometry of the molecule. Full geometrical optimization was performed for each state, and the attainment of the energy minimum was verified by calculating the vibrational frequencies (no imaginary values). The vibrational frequencies, at the harmonic approximation, were obtained by computing the Hessian matrix. The required second derivatives of the potential were calculated analytically for S_0 , and numerically for S_1 and S_2 . All frequencies quoted below were obtained from the computed ones by multiplying with appropriate scaling factors.³⁴ The same factors (0.89 for the in-plane, and 0.85 for the out-of-plane modes) were used for all electronic states.

III. RESULTS

A. Styrene

The torsional potential well in S_0 was found to be very shallow for styrene, and the exact location of the minimum depended sensitively on many different coordinates. We assume, along with previous workers,^{24,25} that the small deviation from planarity is due to a computational deficiency. For the calculation of all vibrational frequencies, a well-defined energy minimum is required. A minimum was located for a torsional angle τ of 10.5° (namely, a small deviation from planarity) and the remaining hump in the planar conformation ($\tau=0^{\circ}$) is small ($\sim 20 \text{ cm}^{-1}$). Therefore, the calculated frequencies are likely to be close to the ones that would have been obtained for the true planar minimum, with possible deviations for the lowest out-of-plane vibrations. The frequency of the torsional mode ν_{42}'' , obtained in this manner, was found to be about 2 cm⁻¹. Experimentally, the potential for this mode is known to be extremely anharmonic,¹⁶ and we did not make an extended effort to optimize the motion along the corresponding normal mode. The main emphasis in this work is directed at understanding properties of the electronically excited states, which were not studied before by an ab initio method, such as the vibrational frequencies.

In contrast with the case of S_0 , the S_1 and S_2 states were found to be strictly planar, with a well-defined minimum along the torsional coordinate. The calculated C—C bond lengths and torsional angles of the ground, the S_1 and the S_2 states are shown in Fig. 2 (the C—H bond lengths and the valence angles are practically unchanged upon excitation; they are available from the authors on request). The most significant change in S_1 is the expansion of the aromatic ring; in addition, the C α —C β bond is slightly lengthened and the C1—C α bond shortens a little. In S_2 the geometrical changes

FIG. 2. The calculated structure of styrene in S_0 , S_1 , and S_2 .

are more extensive: the $C\alpha$ — $C\beta$, C1—C2, C1—C6, and C4—C5 bonds are lengthened, while the C1— $C\alpha$ bond concomitantly shortens resulting in considerable stiffening of the C1— $C\alpha$ — $C\beta$ structure. The aromatic character of the ring is considerably reduced in this state, since the C—C bond lengths are not equal to each other as in the ground state.

Within the CIS/4-31G approximation, the main contribution to the S_1 electronic state is from two configurations: the one arising from a single electron transfer from the HOMO-1 to the LUMO orbital $(27\rightarrow 29)$, and the one arising from the $28 \rightarrow 30$ excitation (HOMO to LUMO+1). These two configurations contribute about equally to the excited state, and together represent \sim 50% of the total probability. The oscillator strength calculated for the $S_0 \rightarrow S_1$ transition was 0.0038 compared to the estimated experimental value of 0.002.23 However, the energy of this state was found to be *higher* than that of the S_2 state (mainly HOMO-LUMO excitation, see the next paragraph) by about 0.25 eV. As discussed in Ref. 3, the second-order perturbation correction (MP2) to the energy involves summation over matrix elements between the zeroth-order state (obtained by the CIS method) and doubly substituted determinants from this state. This implies that it should involve double and triple excitation from the ground state. Therefore, the MP2 treatment provides an approximate way of assessing the contribution of double and triple excitation configurations to the electronically excited state. Upon running this calculation, the correct order was obtained, and the S_1 state

lies about 0.8 eV lower than the next one (the experimental separation is about 0.57 eV).

Summarizing, the transition involves primarily the partial excitation of an electron from the HOMO-1 orbital to orbital the LUMO one, and of an electron from the HOMO orbital to the LUMO+1 orbital, leading to a long axis polarized transition moment. In the CIS calculation, the coefficients of these two components are almost equal, but of opposite signs (0.49 and -0.46, respectively). Since these terms make opposite contributions to the $S_0 \leftrightarrow S_1$ transition moment, the net result is a small oscillator strength, in accord with previous workers.^{22,31} These transitions lead to population of antibonding orbitals, mainly in the aromatic ring part of the molecule, and therefore result in expansion of the benzene ring and contraction of the C1–C α bond. The $C\alpha$ — $C\beta$ bond is only very slightly elongated (cf. Fig. 2). We conclude that the CIS-MP2/4-31G calculation of the S_1 state provides a reasonable approximation for the properties of the state.

The main contribution to the S_2 electronic state is due to the configuration arising from a single electron transfer from the HOMO to the LUMO orbital (28 \rightarrow 29). A small (~5%) contribution was calculated for the configuration arising from 27 \rightarrow 30 excitation. The minimum to minimum energy gap between S_0 and S_2 was calculated to be 5.1647 eV, as compared to the experimental value of ~4.80 eV.³⁵ Taking the zero-point energies into account (see below for the calculated vibrational frequencies), we obtain an expected 0,0 transition at 5.05 eV. The discrepancy is reasonable for this level of calculation (CIS/4-31G). The calculated oscillator strength is 0.55, compared to an estimated experimental value of 0.24,²³ which may involve some contribution from the $S_0 \rightarrow S_3$ transition.

1. The vibrational frequencies of styrene in the S_0 state

The normal mode frequencies were calculated for several isotopomers of styrene, as summarized in Table I, along with the experimental values.²⁹ We have used the work of Refs. 28 and 37 as the source for experimental data and find very good agreement between our calculated values and the experimental ones, upon using a uniform 0.89 scaling factor for in-plane vibrations, and 0.85 for out-of-plane ones. The order of the calculated frequencies agrees with the experimental ones in all cases, except for an interchange between the vinyl ν''_{30} and the ring ν''_{31} modes, which are of very similar values both experimentally and computationally. It is seen that the calculation reproduces nicely the observed isotope effects and in fact resolves some remaining difficulties mentioned in the literature. For instance, the ν_{14} assignment for STY-D₂ to the observed band at 1024 cm^{-1} was considered dubious in Ref. 28. Our calculated value of 1034 cm^{-1} is in fact in very good agreement with that assignment. Table I also includes the classification due to Whiffen,³⁶ that provides an approximate description of the main motions of the atoms. According to this classification, the o-type vibration is an in-plane CC atom Kekulé vibration (i.e., a motion that distorts the ring to a Kekulé structure) and the e-type one mainly a CH in-plane bending one (modes 17 and 15, respectively, for styrene). However, inspection of the displacement atomic vectors calculated for these modes shows that in fact, both involve carbon *and* hydrogen atom movements. A separate calculation showed that this mixed character holds also for benzene itself, in accord with Wilson's result (cf. Fig. 3 in Ref. 37).

The good agreement of most assignments with experiment warrants discussion of some apparent disagreements with the published data. For instance, the ν_{15}'' mode of STY-D₅ and STY-D₈ were assigned to the observed bands at 1285 cm^{-1} . We propose that they be assigned to the 1184 and 1179 $\rm cm^{-1}$ bands, respectively, and that the 1285 $\rm cm^{-1}$ band in STY-D₅ is due to the $\nu''_{34} + \nu''_{39}$ combination band, while the 1285 cm⁻¹ band in STY-D₈ is due to the ν''_{33} + ν_{37}'' combination band. In both cases there is a small redshift of the combination band with respect to the sum frequency of the fundamentals (13 and 16 cm⁻¹, respectively for STY-D₅ and STY-D₈). The ν_{18}'' fundamental for STY-D₅ and STY-D₈ were assigned as 1154 and 1179 cm⁻¹, in gross disagreement with the calculated values of 871 cm⁻¹ for both isotopomers. We propose that the observed 871 and 870 cm⁻¹, assigned to the ν''_{19} mode, should be assigned to the $\nu_{18}^{\prime\prime}$ one, and the observed bands at 1154 cm⁻¹ (STY-D₅) and 1168 cm⁻¹ (originally considered as a combination band in STY-D₈ in Ref. 38), are due to the ν_{19}'' fundamental. The 837 cm⁻¹ band of STY-D₂ was assigned to both ν''_{22} and ν''_{35} . We propose that the medium strong IR band at 907 cm⁻¹ is due to the ν_{22}'' mode, in accidental degeneracy with the ν_{34}'' mode. The ν''_{33} mode is then the strong 727 cm⁻¹ band. Support for this suggestion comes from the very large calculated IR intensity for this band (103 km/mol), as compared to that of the ν''_{34} mode (904 cm⁻¹, 0.15 km/mol). Another dubious assignment discussed by Ref. 38 is that of the ν_{38}'' fundamental. The strong feature at 517 cm⁻¹ was apparently dismissed in favor of the weaker 571 cm⁻¹ one, since the deuterium shift and IR intensities were considered to be too large when compared to the protonated analogs. However, the calculation actually predicts an even larger frequency shift (to 497 cm^{-1}), and a fairly large IR intensity enhancement (18.2 vs 0.25 km/mol for STY-H₈). It is thus proposed to adopt the 517 cm⁻¹ assignment for the ν''_{38} fundamental, and assign the weak 571 cm⁻¹ band to a combination band, possibly $\nu_{39}'' + \nu_{29}''$.

2. The vibrational frequencies of styrene in the S_1 and S_2 states

The calculated frequencies of styrene in the S_1 and S_2 electronic states are listed in Table II, along with available experimental values and the results of the only previous theoretical calculation (Ref. 22, PPP level). The computed results are listed in a descending order of the frequencies; It is more instructive to use the ground state designation for vibrational modes having the same character, even if a different frequency order is found in the excited state. Unfortunately, the available experimental data for S_1 frequencies are not as certain. Strong Duschinsky mixing was proposed for some modes, indicating that a given excited state mode may correlate with more than a single S_0 one. This point was

TABLE I. Experimental and calculated vibrational frequencies of some styrene isotopomers in S_0 .^a

Mode	Approximate description ^b		C ₆ H ₅ C	HCH ₂	C ₆ H ₅ C	CHCD ₂	C ₆ H ₅ C	CDCD ₂	C ₆ D ₅ C	CHCH ₂	C_6D_5C	CDCD ₂
In plane	e modes ^c		Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.
$\overline{\nu_1}$	νCH_2		3106	3031	2308	2256	2329	2257	3092	3031	2292	2257
ν_2	ring vCH		3091	3009	3100	3010	3104	3010	2292	2234	2320	2234
ν_3	ring vCH		3084	2999	3083	3000	3084	3000	2277	2222	2277	2222
ν_4	ring vCH		3061	2990	3066	2989	3061	2989	2283	2212	2292	2113
ν_5	ring vCH		3055	2978	3054	2978	3051	2978	2271	2200	2267	2202
ν_6	ring vCH		3029	2972	3020	2971	3026	2971	2262	2193	2261	2193
ν_7	vinyl vCH		3009	2946	3003	2950	2244	2154	3009	2946	2250	2154
ν_8	νCH_2		2981	2965	2214	2175	2207	2201	2983	2966	2215	2200
ν_9	νC=C		1630	1663	1570	1619	1562	1593	1629	1661	1574	1591
ν_{10}	ring νCC	[k]	1600	1609	1600	1606	1602	1611	1575	1569	1563	1566
ν_{11}	ring νCC	[l]	1575	1582	1595	1575	1585	1573	1539	1540	1536	1534
ν_{12}	ring νCC	[m]	1494	1500	1494	1499	1491	1497	1377	1368	1377	1364
$\nu_{13'}$	ring νCC	[<i>n</i>]	1450	1460	1445	1450	1445	1448	1328	1309	1327	1313
ν_{14}	$\beta = CH_2$		1411	1434	1024	1034	1048	1060	1425	1443	1050	1037
ν_{15}	aryl β CH	[<i>e</i>]	1334	1353	1331	1354	1332	1344	1184	1191	1179	1184
ν_{16}	aryl β CH		1303	1319	1300	1314	1003	1012	1305	1328	1001	1014
ν_{17}	ring νCC	[0]	1289	1227	1280	1222	1290	1220	1054	1065	1028	1065
ν_{18}	aryl βCH	[q]	1203	1186	1210	1189	1225	1189	871	871	870	871
ν_{19}	$\nu C1C\alpha$	[<i>a</i>]	1181	1189	1180	1193	1181	1205	1154	1138	1168	1162
ν_{20}	aryl βCH	[<i>c</i>]	1156	1142	1153	1141	1156	1142	841	845	841	846
ν_{21}	βCH	[d]	1083	1084	1080	1084	1081	1085	825	880	825	829
ν_{22}	$\beta = CH_2$		1032	1037	907	909	831	835	1006	1017	810	816
ν_{23}	βCH	[<i>b</i>]	1019	1021	1030	1022	1027	1022	841	839	841	841
ν_{24}	ring deform	[p]	999	999	997	1003	995	958	953	958	955	955
ν_{25}	X-sens (αC —C—C)	[<i>r</i>]	776	762	735	732	735	731	729	719	699	696
ν_{26}	aC—C—C	[<i>s</i>]	621	631	618	631	622	631	595	605	594	605
ν_{27}	βC==C		553 [†]	556	513	513	510	508	541	542	498	498
ν_{28}	X-sens ($\alpha C - C - C$)	[<i>t</i>]	437^{\dagger}	431	426	431	420	428	433	430	408	408
ν_{29}	X-sens (β C—CHCH ₂)	[<i>u</i>]	228^{\dagger}	232	218	215	220	214	231	224	211	206
Out of p	plane ^c											
ν_{30}	vinyl γCH		992	997	941	957	788	814	989	998	789	818
ν_{31}	aryl ₂ CH	[j]	985	1009	987	1003	986	1002	825	866	825	869
ν_{32}	aryl ₂ CH	[h]	970	980	980	980	970	980	786	801	789	801
ν_{33}	vinyl γCH		909	943	727	749	710	710	909	943	708	710
ν_{34}	aryl ₂ CH	[<i>i</i>]	909	924	907	915	913	928	780	789	747	763
ν_{35}	aryl ₂ CH	[g]	841	851	837	851	840	851	657	654	656	637
ν_{36}	aryl ₂ CH	[f]	776	777	764	768	742	752	679	672	647	637
ν_{37}	ring deform.	[V]	699	685	693	682	692	680	541	528	554	534
ν_{38}	vinyl ₂ CH		640	626	568	558	571	558	(595)	568	517	503
ν_{39}	ring puckering	[<i>x</i>]	433	435	408	387	407	385	391	383	369	361
ν_{40}	ring deform.	[w]	399 [†]	398	394	400	398	399	354	343	354	342
ν_{41}	C1—C α bend	[y]	199^{+}	191	199	180	192	173	205	182	182	165
v_{42}	C1—C α torsion		38^{\dagger}	2	37	2		2		2		2

^aExperimental data from Refs. 37 and 28. All frequencies are for liquid solutions, except those marked by † which are gas phase values. Boldface entries are reassignments offered by us based on the experimental data, see the text. Entries in parentheses are experimental values whose proposed assignment is uncertain and does not fit in with the calculation.

^b ν —stretch, α —in plane ring angle bend, β —in-plane bend, γ —out-of-plane bend, ϕ —torsion or twist, X-sens—a vibration sensitive to the substituent. Symbols in square brackets are according to Whiffen's classification (Ref. 36) of benzene substituted compounds.

"The scaling factor for in-plane modes is 0.89, for out-of-plane modes, 0.85.

discussed extensively by Hemley and co-workers²² vis-a-vis the experimental analysis of Hollas and co-workers.^{16,18}

The calculations indicated considerable changes in the force constants and reduced mass of some vibrational modes, possibly leading to a qualitative change in the character of certain normal modes. Therefore, it was deemed necessary to establish the correlation between S_0 and the excited states' modes. This was done by considering parameters provided by the calculation: the symmetry, force constants, and reduced masses of each mode, but mostly the detailed descrip-

tion of each normal mode in terms of the individual motion of atoms. Figure 3 shows the correlation diagram obtained. It is seen that on the transition from S_0 to S_1 , most of the a'(in-plane) modes appear not to change their frequency appreciably; among the out-of-plane ones, many ring modes show a considerable frequency *decrease*, while the v_{30} , v_{33} , and v_{38} , which are predominantly vinyl-type ones are changed to a much smaller extent.

Although a cursory inspection of Fig. 3 indicates a 1:1 correlation between the vibrational modes of styrene in S_0

TABLE II. The vibrational frequencies of styrene in S_1 and in S_2 .

		S_{\perp}		<i>S</i> ₂		
Mode	Expt. Ref. 16	Expt. Ref. 42	Calc. Ref. 22	This work ^a	This work ^a	Expt. Ref. 35
In plane	modes					
ν_1			3092	3040	3042	
ν_2			3063	3030	3021	
ν_3			3089	3021	3008	
ν_4			3088	3011	2995	
ν_5			3087	3001	2980	
ν_6			3086	2996	2976	
ν_7			3084	2969	2956	
ν_8			2985	2945	2966	
ν_9			1624	1628	1590	1573
ν_{10}	1608		1556	1607	1508	
ν_{11}			1578	1568	1463	
v_{12}	1474		1481	1507	1453	
ν_{13}	1428		1509	1455	1428	
ν_{14}			1434	1442	1373	
ν_{15}			1382	1400	1323	
v_{16}	1299	1299	1284	1330	1300	
ν_{17}			1340	1301	1222	
ν_{18}	1208	1209	1261	1201	1197	
ν_{19}			1160	1169	1169	
ν_{20}	1114	1146	1141	1164	1115	
ν_{21}^{20}			1079	1059	1072	
ν_{22}	959 ^b		1007	992	998	
ν_{23}^{22}	940 ^b		1032	980	951	
ν_{24}			1041	956	929	
ν_{25}	746	746	814	730	723	
ν_{26}^{23}	544	523 ^b	657	587	587	
ν_{27}	437 ^c	437 ^c	605	536	535	
ν_{28}	394	394	470	416	424	
ν_{29}	237		279	232	233	248
Out of p	lane					
ν_{30}			944	970	966	
ν_{31}			964	900	951	
ν_{32}			930	845	899	
ν_{33}			858	799	817	
ν_{34}			916	755	792	
ν_{35}			794	642	719	
ν_{36}			709	626	701	
ν_{37}			609	615	560	
ν_{38}			527	381	451	
ν_{39}			407	325	380	
ν_{40}	253		343	258	283	
ν_{41}	97		220	155	156	
ν_{42}	186		128	33	67	

^aIn-plane frequencies scaled by 0.89, out-of-plane frequencies by 0.85. ^bPart of a multiplet.

^cThis assignment deviates significantly from our calculated value. We tentatively propose the combination band $40_0^141_0^1$ as the assignment of the observed 437 cm⁻¹ band, using 253 and 186 cm⁻¹ for ν'_{40} and ν'_{41} , respectively. See Table VII for a different option.

and S_1 (or S_2) in many cases, a closer inspection shows that in fact, for many S_1 and S_2 vibrational modes, atom displacements may be considered as containing contributions from more than one S_0 mode. It is found that except for strongly localized modes, such as the CH stretch ones, many modes change their form somewhat upon excitation. The fact that a mode is shown to correlate with a single excited state mode means that the excited state mode should be understood as indicating that this mode has predominantly, but not exclu-

FIG. 3. The correlation between S_0 , S_1 , and S_2 vibrational modes of styrene, excluding CH stretch modes, as found in the calculations. The numbers shown are the mode designation, based on the S_0 energy order. Vibrational levels of S_1 and S_2 correlated with S_0 ones are connected by thin solid lines, if the mode character is largely maintained. Dashed lines indicate some correlation, accompanied by extensive changes in mode character. Mode mixing is indicated by the small filled circles at the end of the connecting lines. Note that the ring mode v_{31} is calculated to have a slightly higher frequency than the vinyl v_{30} one (1009 vs 997 cm⁻¹, respectively). Experimentally, the order is reversed (985 as compared to 992 cm⁻¹). We used the numbering order as determined by the experimental determination, for consistency with previous papers.

sively, the same vector displacements as that of the ground state mode. An illustration of a mode mixing example is given in Fig. 4; the displacement vectors of the ν_{11} mode of S_1 and ν_9 mode of S_2 are seen to be a combination of the C=C vinyl stretch ν_9 mode and the ring CC stretch ν_{10} of S_0 . In a similar way, the out-of-plane S_0 ring modes ν_{35}'' , ν_{36}'' , and ν_{37}'' are mixed on excitation to S_1 with the largely vinyl mode ν_{38}'' to produce the corresponding excited state modes, in which the ring or vinyl characters are decidedly less pronounced. Strong mixing is calculated also for the ν_{41}'' and ν_{42}'' upon transition to S_2 . Table III lists the calculated frequencies, reduced masses, and force constants of vibrational modes that appear to change significantly their character on electronic excitation to S_1 . The listing takes into account the correlations, so that the numbering system (increasing frequency with decreasing mode number) holds only for the S_0 modes.

FIG. 4. The calculated changes in the C=C stretch mode of styrene upon electronic excitation. The $C\alpha$ -C β double bond stretch motion dominates mode ν_9 in S_0 , and is spread over several modes in S_1 and in S_2 . This is an example of mode mixing in the excited states.

Not much experimental information is available for S_2 modes; only two frequencies were reported—at 248 and 1573 cm^{-1.35} Nonetheless, it is instructive to consider the trends expected according to the calculation. As Fig. 3 shows, for some high frequency skeletal modes, a considerable frequency decrease is calculated. A notable example is the ν_9 mode, which in the ground state is almost exclusively a C—C stretch mode; in the excited state there is no equivalent normal mode, as shown in Fig. 4. A similar, but less pronounced change is found for S_1 .

Mode crossing often takes place upon electronic excitation for both in-plane and out-of-plane modes. One example is the ring modes v_{32} (at 980 cm⁻¹ in S_0) correlates with the 799 cm⁻¹ mode in S_1 , a significant frequency decrease,

TABLE III. Calculated characteristics of the vibrational modes of styrene whose calculated properties change appreciably upon electronic excitation to S_1 .

	Frequenc	$y (cm^{-1})^b$	Red. ma	ss (amu) ^c	Force const. (mdyn/Å)		
Mode ^a	S ₀	<i>S</i> ₁	S ₀	<i>S</i> ₁	S ₀	S_1	
In plane	e						
ν_{20}	1142	1164	1.99	1.17	1.93	1.18	
ν_{17}	1227	1607	2.16	6.28	2.42	12.05	
ν_{11}	1582	1507	4.62	3.31	8.59	5.59	
ν_{10}	1609	1568	5.07	3.83	9.76	7.01	
ν_9	1663	1628	4.13	5.09	8.50	10.04	
Out of	plane						
ν_{40}	398	258	2.73	2.44	0.35	0.13	
ν_{39}	435	325	2.72	2.44	0.42	0.13	
ν_{37}	685	381	1.40	1.89	0.53	0.22	
ν_{36}	777	587	1.82	1.19	0.89	0.34	
ν_{35}	851	642	1.25	1.31	0.72	0.44	
ν_{34}	924	755	1.46	1.81	1.02	0.84	
ν_{32}	980	799	1.41	1.50	1.10	0.78	
ν_{31}	1009	845	1.41	1.70	1.17	0.99	

^aMode numbering as in S_0 , the corresponding modes in the excited states are selected according to the correlation diagram of Fig. 3.

^bIn-plane frequencies scaled by 0.89, out-of-plane frequencies by 0.85. ^cReduced masses and force constants are reported as calculated (no scaling applied).

FIG. 5. The vector displacements calculated for the low frequency v_{42} and v_{41} modes in S_0 , S_1 , and in S_2 . Mode mixing is evident in S_2 , but only slightly so in S_1 .

while the primarily vinyl mode ν_{33} (at 943 cm⁻¹ in S_0) correlates with the 900 cm⁻¹ mode in S_1 . The $\nu_{32'}$ mode is thus found at a lower energy in S_1 than the $\nu_{33'}$ one. Likewise, the CH in-plane bending mode (ν_{23}) in S_0 has a higher frequency than the ring deformation mode (ν_{24}), and the order is reversed in S_2 .

As seen from Fig. 5, the out-of-plane low frequency vibration (ν''_{42}), is essentially a C1–C α torsional mode in S_0 . In S_2 , the lowest frequency mode is seen to have a different character—it involves almost exclusively out-of-plane bending motion of the whole molecular skeleton (ring+vinyl). The ν''_{41} mode in S_0 , is a combined torsion–bending motion, while in S_2 it is practically identical in form to the ν''_{42} mode in S_0 . In S_1 , the calculation does not indicate extensive mode mixing. According to the currently prevailing interpretation it is large enough to be measurable, and is expressed by the experimentally observed Duschinsky mixing.^{16,18}

B. *Trans*- β -methylstyrene (BMS)

The general pattern found for styrene was repeated with this molecule as well. The S_1 and S_2 states were found to be strictly planar, while for the ground state a very broad and shallow potential well for the torsional potential around the C1—C α bond was found, with a small hump at the planar configuration. This hump may be due to a lingering computational artifact, although a recent study²⁶ indicates a small local maximum for the planar form. The main configurations forming the S_1 and S_2 states are analogous to those found for styrene itself: the S_2 state arises primarily from a HOMO-LUMO transition and is calculated at 5.027 eV (4.90 eV including zero-point energy) above the ground state. The experimental 0,0 band is at about 4.7 eV.³⁵ The S_1 state arises primarily from two singly excited configurations, HOMO-1 to LUMO and HOMO to LUMO+1 and is found to be at a higher energy than S_2 , unless the MP2 correction is applied, restoring the correct order. Figure 6 shows that the main structural changes are very similar to those found for styrene itself (cf. Fig. 2).

FIG. 6. The calculated structure of BMS in S_0 , S_1 , and S_2 .

1. The frequencies of BMS in the S₀, S₁, and S₂ states

The calculated frequencies of BMS in the three electronic states are listed in Table IV, along with some experimental values. The correlation between the ground and excited states modes was determined, as in the case of styrene, by considering the symmetry, force constants, reduced masses, and atomic displacements of each vibration and is shown in Fig. 7. The main patterns observed for styrene were repeated: a large number of modes were not appreciably changed upon electronic excitation and could be correlated in a 1:1 manner with S_0 modes. Methyl group modes, such as v_{14} , v_{16} , v_{35} , v_{36} , and v_{37} , remain largely unchanged upon excitation. As in the case of styrene, for many a'' ring modes a decrease in frequency due primarily to the reduced force constants was revealed for S_1 . Table V lists the frequencies, reduced masses, and force constants for the S_0 and S_1 vibrational modes that undergo considerable change upon electronic excitation.. The detailed structure of the mode must be considered in the analysis, and the atomic displacement vectors are of prime help. As an example, it is noticed that a 735 cm⁻¹ frequency was calculated for out-of-plane modes in both states, and that the two modes were found to have essentially the same reduced masses and force constants. Yet, the S_0 one is an *f*-type³⁶ mode, while the S_1 mode is an *i*-type one, and correlates with the S_0 mode calculated at 923 cm⁻

IV. DISCUSSION

A. Comparison with previous work

The calculated properties of the ground state of styrene compare well with those of previous workers;^{21,24,25,30} It appears that the 4-31G basis set used by us leads to essentially the same results as those obtained with larger ones, such as 6-31G²¹ or even 6-311G^{**}.²⁴ Table VI shows that the calculated moments of inertia and dipole moments of styrene agree reasonably well with available experimental information. This encourages us to believe that the results obtained for BMS are useful for analysis of experimental data as well, and the calculated values of these parameters for BMS, for which experimental data are yet to be obtained, are also shown in Table VI. Table I, that lists the calculated frequencies for several isotopomers of styrene, shows that they agree quite well with experimental values. The only exception is the low frequency ν''_{42} torsional mode, which previous *ab* initio calculations have also found to elude proper calculation.

The main novelty in this paper is the use of the CIS method to calculate and analyze the properties of the electronically excited states. The S_1 and S_2 states' geometries obtained in this work are similar to those calculated by the extended PPP–CI and CNDO/S–CI semiempirical method.^{22,23} The oscillator strength found for the $S_0 \rightarrow S_1$ transition is in better agreement with experiment than the semiempirical result. However, the principal efforts were directed at the calculation of the vibrational frequencies of the excited singlet states and correlating them with ground state ones.

Inspection of Table II shows that our calculated frequencies for styrene in S_1 are in reasonable agreement with previous experimental assignments for in-plane modes (though a few reassignments needed to be done), but that the two lowest out-of-plane vibrational frequencies differ considerably from published assignments. The ν'_{42} mode calculated frequency (33 cm⁻¹) is very close to that found experimentally for S_0 (38 cm⁻¹), and the ν'_{41} mode's frequency is calculated to be 155 cm⁻¹, rather than to 97 cm⁻¹.¹⁸ This value is fairly close to 186 cm⁻¹, a frequency interval often observed in S_1 and assigned to the ν'_{42} frequency in Ref. 18. For modes with higher frequency, the calculation is in good agreement with available experimental values; for instance, that of the ν'_{40} mode, 258 cm⁻¹, agrees closely with the experimental value of 253 cm⁻¹.

These results led us to reinspect some excitation and emission spectra of styrene, and to run a few on our jet apparatus.³⁹ The calculation suggests a possible reassignment of some of the bands in the excitation spectrum of Ref. 42, as shown in Table VII. Some lines in previously reported emission spectra of styrene need to be reassigned if the calculation is correct. For instance, the hot band appearing at $v_0^0 + 59$ cm⁻¹, which was assigned¹⁷ as $41_0^1 42_1^0$, is now proposed to be due to 42_1^3 , and the emission bands redshifted by 102, 161, and 217 cm⁻¹ from the excitation frequency, are assigned to 42_3^3 , $41_1^0 42_0^3$, and 42_5^3 , respectively. Furthermore, the v_0^0+282 cm⁻¹ excitation band may be assigned to the $40_0^142_0^1$ combination rather than to the $41_0^142_0^1$ one. These new

TABLE IV. Calculated and experimental vibrational frequencies of trans- β -methyl styrene in S₀, S₁, and S₂ $(cm^{-1}).$

	A		S_0		$\begin{array}{c c} & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	G
Mode	descr. ^a	Calc. ^b	Expt. ^c	Calc. ^b	Expt. ^c	S_2 Calc. ^b
In-plane	modes					
ν_1	ring vCH	3008	3082	3027	3063	3021
ν_2	ring vCH	2998	3062	3011		3006
$\bar{\nu}_3$	ring vCH	2988	3025	2996		2992
ν_A	ring vCH	2977		2983		2972
ν_5	ring vCH	2970	2963	2980		2992
ν_6	vinyl vCH	2957	2934	2975		2973
ν_7	vinyl <i>v</i> CH	2938	2915	2949		2950
$\nu_{\rm s}$	methyl ν CH	2890	2873	2873		2869
ν_{9}	methyl vCH	2820	2852	2785		2770
ν_{10}	vinvl	1686	1664	1638		1599
ν_{11}	$\begin{bmatrix} k \end{bmatrix}$	1608	1598	1608		1513
ν_{12}	[1]	1580	1578	1566		1468
ν_{12}	[m]	1499	1497	1498	1513	1458
ν_{14}	methyl	1471	1479	1473	1487	1436
ν_{15}	[<i>n</i>]	1451	1440	1454	1457	1381
ν_{10}	methyl	1413	1390	1421	1433	1400
ν_{17}	[e]	1357	1377	1407		1342
ν_{10}	vinvl	1326	1332	1349	1335	1323
ν_{10}	vinvl	1309	1306	1315	1324	1306
ν_{20}	[0]	1223	1244	1299	1291	1226
ν_{20}	[<i>a</i>]	1190	1210	1207	1211	1208
V21	[<i>a</i>]	1189	1179	1171	1151(?)	1172
ν_{22}	[<i>c</i>]	1141	1155	1164	1146	1129
ν_{23}	methyl	1092	1105	1099		1078
V24	[d]	1066	1070	1007	977	1041
v 25	[<i>b</i>]	1020	$1002 \text{ (or } v_{28})$	982	965	979
ν_{20}	[<i>p</i>]	997	965	965	933	941
ν_{29}	vinvl	926	946	923	915	899
ν_{20}	[<i>r</i>]	809	809	790	803	764
ν_{29}	[s]	632		577	585	600
ν_{21}	methyl	619	613	575	572	576
ν_{22}	[<i>t</i>]	401	409	401	388	395
V22	vinvl	340	337	335	337	335
ν_{24}	[<i>u</i>]	144	155	157	156	153
Out-of-p	lane modes	2726	2722	2600		200
ν_{35}	metnyl	2/36	2732	2690		2669
ν_{36}	methyl	1400	13//	1399		1389
ν_{37}	vinyl	1032	1031	1026		989
ν_{38}		1007	1002 (or ν_{26})	847		965
ν_{39}	$\begin{bmatrix} h \end{bmatrix}$	978	981	782		951
ν_{40}	vinyl	963	962	935		904
ν_{41}	[1]	923	910	/35		808
ν_{42}	[g]	839	000	624		718
ν_{43}	vinyl	821	809	800		703
ν_{44}		735	736	609		646
ν_{45}	[<i>V</i>]	680	692	458	250(0)	562
ν_{46}	[x]	488	498	364	358(?)	394
ν_{47}	[w]	398	394	249	226	380
ν_{48}		2/3	285	223	213	198
ν_{49}		108	1/6	189	184	93
ν_{50}		121	127	107	100	69
ν_{51}		26	31	27	22	51

^aApproximate mode description using Whiffen's classification (Ref. 36). Vinyl and methyl vibrations are des-ignated separately. This description refers for S_0 modes only, see Fig. 7 for correlation with modes of S_1 and S_2 . ^bThis work.

^cExperimental data of Refs. 15 and 26.

BMS

```
in-plane modes
```

out-of-plane modes

FIG. 7. The correlation between normal modes of BMS in S_0 , S_1 , and S_2 (excluding CH stretch modes), as found in the calculations. The meaning of the symbols is as in Fig. 3.

assignments rely on two results of the computations: First, the value of the ν'_{42} mode frequency, 33 cm⁻¹, which is compatible with a value of 97 cm⁻¹ for the second overtone of this vibration [E(v=3)-E(v=0)]. The 97 cm⁻¹ interval, often appearing in the $S_0 \rightarrow S_1$ spectrum, was interpreted by Hollas *et al.* as the fundamental frequency of ν'_{41} . The second *ab initio* result is the apparent absence of mode mixing between ν_{41} and ν_{42} in S_1 , in contrast with the analysis of Ref. 18.

These reinterpretations, intriguing as they are, must be regarded as tentative at best at this point. The accuracy of the calculation of low frequency torsional modes such as v_{42} in electronically excited states cannot be properly estimated at this stage, as we and others found even in the case of the ground state (S_0). We have used a limited basis set, and the effect of diffusion functions, which may be important for a proper description of the excited states vibrational modes, has not been checked. The computational effort involved in using a larger basis set is much larger than needed for the present work, and its execution was not attempted. It is therefore premature to conclude that mode mixing is really absent for the two low lying out-of-plane modes of styrene.

Nonetheless, it is interesting to note that an assignment of the vibronic structure of the $S_0 \leftrightarrow S_1$ spectrum is possible, assuming that the S_1 calculation is correct. In that case, each mode maintains its character, and the ν_{42} mode is nearly harmonic in S_1 , with the following energy intervals with respect to v=0: 30, 62, 97, 129, 160, and 193 cm⁻¹ for $\Delta v=1$ through 6. The 186 cm⁻¹ frequency interval is adopted, in this interpretation, as the ν'_{41} mode's frequency, as shown in Table VII.

B. Correlation between the changes in electronic charge distribution and vibrational motions

The $S_0 \rightarrow S_1$ electronic excitation affects mostly the aromatic ring, while the main effect of the $S_0 \rightarrow S_2$ transition, is the transfer of an electron from the HOMO π orbital, to the LUMO π^* one, affecting the whole π electron structure. This results in considerable weakening of several double bonds, primarily the vinyl one and the C1-C6, C1-C2, and C4—C5 ring ones, and to strengthening of the C1—C α one. These changes are expected to affect the nature of several group frequencies in the vicinity of the relevant bonds, mainly the in-plane ones. In addition, the excitation involves the transfer of an electron from a π orbital to a π^* one, leading to reduction of the π electron density due to the more "inflated" character of the π^* orbitals compared to the π ones. This is expected to reduce the force constant (and thus the frequency) of some out-of-plane vibrations. It turns out that these expectations are largely borne out by experiment, as detailed in the next two subsections.

The vibrational modes of monosubstituted benzenes are often discussed in terms of Wilson's classification³⁷ using Whiffen's notations.³⁶ This classification was found to be useful also in the construction of the diagrams correlating

TABLE V. Calculated characteristics of the vibrational modes of BMS whose properties are calculated to change appreciably upon electronic excitation.

	Frequenc	$cy (cm^{-1})$	Red. ma	ss (amu)	Force const. (mdyn/Å)		
Mode	S ₀	<i>S</i> ₁	S ₀	S_1	S ₀	S_1	
In plane	e						
ν_{27}	997	965	4.78	3.13	3.54	2.17	
ν_{26}	1020	982	2.21	3.66	1.72	2.62	
ν_{23}	1141	1164	1.99	1.14	1.93	1.15	
ν_{20}	1223	1608	2.35	9.87	2.62	19.0	
ν_{12}	1580	1498	4.81	3.37	8.94	5.62	
ν_{11}	1608	1566	5.11	4.20	9.83	7.67	
ν_{10}	1686	1638	5.45	4.94	11.54	9.86	
out of p	olane						
ν_{48}	273	223	3.20	2.34	0.195	0.096	
ν_{47}	398	249	2.76	2.44	0.359	0.124	
ν_{46}	488	364	2.70	2.33	0.528	0.251	
ν_{45}	680	458	1.77	2.07	0.669	0.354	
ν_{44}	735	609	1.48	1.22	0.650	0.368	
ν_{42}	839	624	1.26	1.27	0.726	0.404	
ν_{41}	923	735	1.47	1.53	1.02	0.674	
ν_{38}	978	782	1.47	1.50	1.15	0.750	
ν_{37}	1007	847	1.42	1.65	1.18	0.966	

TABLE VI. Calculated and experimental properties of styrene and BMS in S_0 and in S_1 .

		Expt.			Calc.		
Rotational constants (MHz)	S ₀	<i>S</i> ₁	S_2	S ₀	S_1	<i>S</i> ₂	
		Styrene					
A	5163.4 ^a	4979.1 ^b		5278.3	5131.4	4989.5	
В	1545.9	1526.5		1557.6	1537.2	1590.1	
С	1189.6	1169.6		1204.7	1182.9	1205.8	
Dipole moment (D)	0.1222	0.25 ^c		0.138	0.438	0.385	
Oscillator strength $(S_0 \rightarrow S_i)$		0.002	0.24		0.0038	0.55	
		BMS					
Rotational constants (MHz)							
Α				5107.1	4960.8	4858.3	
В				870.9	866.9	885.7	
С				749.7	741.3	752.6	
Dipole moment (D)				0.3905	0.568	0.593	
Oscillator strength $(S_0 \rightarrow S_i)$					0.0050	0.67	

^aReference 20.

^bReference 20 combined with data of Ref. 27, in which the changes of the rotational constants upon electronic excitation.

^cReference 20 combined with data of Ref. 41, in which the changes of the dipole moment upon electronic excitation were reported.

excited states' vibrational modes with ground state ones (Figs. 3 and 7). In many cases, an approximate one to one correlation could satisfactorily account for the properties of the S_1 and S_2 states vibrational modes with those of S_0 . This conclusion was reached by considering the calculated force constants, reduced mass, and mostly the individual atom displacements of each mode. Since vibrational frequencies reflect the properties of the potential surface near the minimum position, this result must be interpreted as indicating that the potential surface remains relatively unchanged along many coordinates upon electronic excitation. It is also in line with the rather small overall calculated geometry changes incurred upon excitation.

However, the approximate nature of this simple correlation must be emphasized, and a certain degree of mode mixing, namely a non-negligible contribution of more than one S_0 mode to an excited state mode, is a common occurrence. As shown in Figs. 3 and 8, several "crossings" take place, in which the calculated frequency for a given mode is lower than that of other mode(s) in S_1 or S_2 although it is higher in S_0 . In most of these cases, the modes involved are coupled to a certain extent. In particular, it was found that while in the ground state, vibrational modes could often be assigned as primarily "ring" or "vinyl" modes, in the excited states many modes included contribution from both groups. This was discussed vis-a-vis the ν_9 mode of styrene (Fig. 4), and is apparent, for instance, also for the S_0 vinyl mode ν_{14} that mixes strongly with the ring ν_{13} mode upon excitation to S_2 (Fig. 3).

Examination of S_2 modes provides another example of ground state modes that cannot be readily related to excited state's ones after all others have been paired is that of the ν''_9 (vinyl) and ν''_{11} modes (*l*-type) of S_0 . The former may be related with some difficulty to both 1590 and 1508 cm⁻¹ modes (ν_9 and ν_{10} in S_2) and the latter with the much lower frequency ν_9 mode of S_2 at 1373 cm⁻¹. However, the 1590 cm⁻¹ mode is much better correlated with the ν''_{10} mode, and

TABLE VII. A possible new assignment of the excitation spectrum of styrene in a supersonic jet.

Expt. (cm ⁻¹) (Ref. 42)	Assignment (Ref. 42)	New assignment
59.5	$41_0^142_1^0$	42_{1}^{3}
193.2	41^{2}_{0}	42_{0}^{6}
237.2	29_0^1	29_0^1
282.4	$41_0^142_0^1$	$40_0^1 42_0^1$
349.1	$40^{1}_{0}41^{1}_{0}$	$39_0^1 42_0^1$ or $40_0^1 42_0^3$
371.0	42_0^2	41_0^2
394.5	28_0^1	28_0^1
437.1	27_{0}^{1}	$41_0^2 42_0^2$ or $40_0^1 41_0^1$
505.5	40_0^2	40_0^2
517.5	$29_0^1 28_0^1$	$29_0^1 40_0^1 41_0^1$
523.2		$28_0^1 42_0^4$
528.2	26_0^1	27_0^1
537.3		$38_0^1 42_0^5$
548.7		$28_0^1 42_0^5$
563.6	$41_0^2 42_0^2$	$40_0^2 42_0^2$
630.0	$29_0^1 28_0^1$	$29_0^1 28_0^1$
678.7	$28_0^1 40_0^1 41_0^1$	$27_0^1 41_0^1 42_1^0$
745.8	25^1_0	25_0^1
862.2		$28_0^1 29_0^2$
940.4	22_0^1	$37_0^1 39_0^1$
947.8	24_0^1	24_0^1
959.1	23_0^1	23 ¹
965.4	20^{1}_{0}	$35_0^1 39_0^1$
972.4	?	370380
980.7	19^{1}_{0}	$25_0^1 29_0^1$
983.0	21^{1}_{0}	22_{0}^{1}
987.3	$25_0^1 29_0^1$	$31_0^142_0^3$
1029.2	$25_0^1 41_0^1 42_0^1$	21^{1}_{0}
1095.8	$25_0^1 40_0^1 41_0^1$	$25_0^1 39_0^1 42_0^1$
1117.9		$25_0^1 41_0^2$
1138.6	$25_0^1 28_0^1$	$25_0^1 28_0^1$
1145.8	17^{1}_{0}	20^{1}_{0}
1153.0	?	$21_0^1 42_0^4$
1184.6	?	19 ¹
1195.7	1	$23_0^1 29_0^1$
1209.0	18^{1}_{0}	18 ¹ 0

Downloaded-18-Dec-2004-to-132.64.1.37. JR Chemistic Strate State S

FIG. 8. The vector displacements calculated for the nominally *e*-type, vinyl stretch and *o*-type vibrational modes in S_0 (ν_{15} , ν_{16} , and ν_{17} , respectively), and the corresponding modes in S_1 (ν_{16} , ν_{17} , and ν_{10} , respectively). See the text for discussion.

it may be concluded that these two high frequency modes of S_0 have no proper match in S_2 .

1. In-plane vibrations

The correlation diagrams are a powerful qualitative tool to point out one to one correlations between ground and excited state modes, and mode mixing. In addition, they provide an opportunity to consider the few cases that do not fit with either description. As an example, consider the styrene 1607 cm⁻¹ mode in S₁ (in this section all numerical values refer to the *calculated* quantities). It could not be properly correlated with any S_0 mode; in other words, after all modes were correlated, it remained unmatched with any ground state normal mode. Inspection of its vector displacements shows that it is an essentially Kekulé ring carbon atom distortion mode (Fig. 8), combined with a vinyl C=C stretch. Its force constant and reduced mass are calculated to be very large by comparison to all other modes (see Table III). The S_0 mode that remains unpaired is the nominally *o*-type one at 1227 cm⁻¹, ν''_{17} , also shown in the Fig. 8. It is clear from the drawing that, as discussed in Sec. III A 1, this mode involves a Kekulé-type distortion in which both C and H atoms participate. Figure 8 shows also the nominally e-type modes in the two electronic states: the ν''_{15} at 1353, involving primarily ring hydrogen atom breathing (together with some vinyl hydrogen motion) and the ν'_{16} one at 1330 cm⁻¹, which is calculated to have very nearly the same shape, reduced mass, and force constant. By comparison, Fig. 8 displays the nominally vinyl mode (ν''_{16} and ν'_{17} in S_0 and S_1 , respectively), which is seen also to maintain its character on electronic excitation. Similar effects may be seen in the corresponding calculated BMS modes.

The exceptionally large force constant calculated for the ν'_{10} mode (12 mdyn/Å) arises in part from the change from a mixed H and C atom mode in S_0 (ν''_{17}) to a mode involving almost exclusively carbon atoms motion. However, this appears to be only a partial explanation. As shown by a computation run on benzene,⁴⁶ this effect is even more pronounced for the $\nu_{14}(b_{2u})$ mode, which is known to undergo a

FIG. 9. (a) A schematic representation of the calculated π electron distribution in the HOMO and LUMO molecular orbitals of styrene. (b) A schematic view of the inner and outer p_z orbitals used in the 4-31G split valence basis set. Upon electronic excitation, the outer orbital contribution to the π electron density increases significantly. The reduced electron density may lead to a smaller force constant for out-of-plane vibrations, shown schematically in the figure.

significant frequency increase upon excitation to S_1 ;^{43,44} this mode is a Kekulé-type one, which distorts the molecule to a Kekulé form. Inspection of the S_0 (ν''_{17}) and S_1 (ν'_{10}) modes (Fig. 8) shows that the ring carbons undergo this motion in styrene. It is proposed that the large increase in force constant is due to the fact that the π electrons in aromatic molecules tend to distort the molecule to a Kekulé form;⁴⁵ further discussion of this point is deferred to a separate communication.⁴⁶

The $S_0 \rightarrow S_2$ transition is different in nature and leads primarily to changes in the vinyl part of the molecule. The nature of two styrene modes, the vinyl C==C stretch (ν_9) and the ring *1*-type CC stretch (ν_{11}) undergoes a considerable change upon this transition (cf. Fig. 3). No single S_2 modes can be correlated with either of these S_0 ones, and the most suitable ones have much lower frequencies, force constants, and reduced masses. A similar change is calculated for the analogous modes of BMS, ν_{10} and ν_{12} (cf. Fig. 7). The almost equal frequency *k*-type mode (ν_{10} in styrene, ν_{11} in BMS) is essentially unchanged upon this excitation.

These trends are readily explained in terms of the calculated changes in electronic density: In fact, one can account for them by considering the HOMO–LUMO changes only. The reduction of the double-bond character of the C=C vinyl bond and of the C1–C2, C1–C6, and C4–C5 bonds, is directly reflected in the reduction of the force constants of the associated vibrational mode frequencies. The reduced masses of the normal modes decrease in the excited states, since now the modes are less localized, and involve smaller amplitude motions of more atoms. It is found that these changes are expressed primarily in only two high frequency modes, although, as mentioned above, a small degree of mode mixing is found for many more modes.

TABLE VIII. The calculated properties of the HOMO and LUMO orbitals of BMS.

Energy (hartree)	HOMO -0.2948	LUMO 0.1219
	Carbon atom p_z or	bital coefficients ^{a,b}
Atom	* <u>v</u>	
1	-0.227092	0.231 545
	-0.234 159	0.387 554
2	$-0.158\ 198$	-0.171 334
	-0.153267	-0.314 332
3	0.092 926	-0.064735
	0.089 963	$-0.125\ 086$
4	0.233 615	0.234 359
	0.241 456	0.433 596
5	0.095 842	-0.126358
	0.095 875	$-0.248\ 058$
6	-0.156680	-0.127028
	-0.160573	-0.204362
7	0.192 799	0.156 626
	0.201 411	0.283 715
8	0.238 703	-0.233516
	0.243 545	$-0.405\ 327$
9	$-0.061\ 268$	0.007 167
	$-0.042\ 213$	$-0.027\ 817$

^aCarbon atom numbering as in Fig. 1.

^bThe first entry for each atom is the coefficient of the inner, and the second entry of the outer, basis set functions.

2. Out-of-plane modes

Another effect of the electronic excitation is the "swelling" of the π electron charge distribution, which is schematically shown in Fig. 9. In split valence basis sets, such as 4-31G, two sizes of atomic orbitals are used to construct the molecular orbitals. In particular, the HOMO-1, HOMO, LUMO, and LUMO+1 molecular orbitals contain two p_z -type atomic orbitals. Table VIII lists the coefficients of the "inner" and "outer" p_z orbitals in these molecular orbitals. It is seen that the contribution of the outer orbital increases significantly upon electronic excitation in all the carbon atoms: in the HOMO orbital the coefficients are essentially equal, while in the LUMO one the outer orbital is almost twice as big as that of the inner one. This is a manifestation of a "dilution" of charge density normal to the molecular plane that occurs on electronic excitation. Using the split valence basis set helps in clearly visualizing the "outwards" displacement of the π electrons. This change affects mostly the out-of-plane vibrations, resulting in reduction of the force constants. The physical reason for this appears to be that the highly localized π electron density near the molecular plane results in a larger restoring force for out-of-plane motion than the more dispersed electron cloud in the π^* orbital.

The dilution effect results from the changes in the *relative* contribution of the inner and outer basis set functions in the HOMO and LUMO orbitals. In order to account for the observed changes in the vibrational frequencies (summarized in Tables III and VI and Figs. 3 and 9), one must also consider the absolute change in π electron density in the different parts of the molecule.

The transition $S_0 \rightarrow S_1$ affects mostly the aromatic ring, and indeed large frequency reductions are found for ringcentered modes. It is found that this is often due to a reduction of the force constant, while the reduced mass is relatively unaffected. Examples are the ν_{40} , ν_{39} , and ν_{37} modes of styrene, for which the reduced masses that are 2.44, 2.30, and 1.40 amu in S_0 change to 2.73, 2.72, and 1.87 amu in S_1 , while the force constants change from 0.35, 0.42, and 0.53 to 0.13, 0.20 and 0.22 mdyn/Å, respectively (Table III). In contrast, the largely vinyl modes ν_{38} , ν_{33} , and ν_{30} whose frequencies are calculated to be 626, 943, and 997 cm⁻¹ in S_0 , change very little in S_1 (to 626,900 and 971), reflecting a small change in both reduced mass (1.88-1.42, 1.31-1.29, and 1.28-1.22 amu, respectively) and force constants (0.60-0.45, 0.95–0.85 and 1.03–0.94 mdyn/A). As Fig. 3 shows, many a'' modes in the 600–1000 cm⁻¹ range in S_0 undergo a 15%–25% frequency reduction in S_1 ; The change can be generally connected with the reduction in force constant, but one notices a rather extensive mode mixing as well.

A further prediction may be made concerning some vibrations of the second excited state; inspection of Fig. 9 shows that the largest π electron density in both HOMO and LUMO orbitals is near the carbon atoms 1, 4, and 8 and the smallest, near ring atoms 2, 3, 5, and 6. Consequently, for S_2 vibrations, the dilution effect is expected to be effective mostly in cases where the out-of-plane deformations involve large amplitude motion of atoms C1 and C4 or the hydrogen atoms bonded to them, while modes involving motions near the side carbon atoms (C2, C3, C5, and C6) are expected to be affected to a lesser extent. One example for this effect involves the v_{39} and v_{40} pair of styrene. In S_0 , the w-type mode (v_{40}) vibrational frequency (397 cm⁻¹) is lower than that of the x-type one $(v_{39}, 435 \text{ cm}^{-1})$, while in the S_2 state, the frequency of the x-type mode is strongly reduced (to 283 cm^{-1}) due to the dilution effect, while that of the *w*-type one (calculated 380 cm^{-1}) is hardly affected, leading to order inversion. It is noted that while the x-type mode force constant is reduced by almost a factor of 4, from 0.42 mdyn/Å in S_0 to 0.12 mdyn/Å in S_2 , that of the w-type one is hardly changed—0.35 in S_0 as compared to 0.32 in S_2 . Inspection of the approximate mode diagrams³⁶ shows that in the *w*-type mode the C1 and C4 atoms are practically immobile, while in the x-type mode their amplitude is large. Excitation to S_1 changes the electron density in a different way—here all ring atoms are similarly affected. As a result, the frequencies of both ν_{39} and ν_{40} are reduced by roughly the same proportion.

A similar situation is found for the ν_{30} , ν_{32} pair: in S_0 , the ν_{32} mode is primarily an *h*-type one, involving mostly side carbon-hydrogen deformation. This motion dominates the *h*-type ν_{31} mode in S_2 leading to very similar force constants (1.10 vs. 1.02 mdyn/Å) and frequencies (980 and 951 cm⁻¹). The ν_{30} in S_0 is primarily a vinyl group CH deformation, as is the ν_{32} in S_2 . Its frequency is reduced since the π electron density is large near the C β atom. The classification to pure ring versus vinyl modes is, of course, only approximate and in fact the S_2 modes can be correlated to a certain extent to both S_0 modes, but the essential physical effects seem to be accounted for by the qualitative description. This is due to the fact that even in cases of mode coupling, one often finds that the contribution of one of the S_0 modes to the properties of the S_2 one is dominant.

In BMS, the dilution effect is much smaller for out-ofplane vibrations that involve primarily a methyl group, and indeed, the ν_{35} , ν_{36} , and ν_{37} mode frequencies of BMS do not change much on electronic excitation.

C. Correlation between styrene and BMS vibrational modes

The effect of replacing a β vinyl hydrogen atom by a methyl group on the normal modes can be determined by inspection of the calculated normal modes' coordinates. Considering the ground state modes, one can clearly distinguish between three types of modes in BMS: those that are essentially unchanged, those that are almost totally located in the methyl group, and mixed modes, in which the methyl group motion is strongly coupled to the rest of the molecule.

The first group is readily recognized by the fact that the methyl atoms are almost stationary. It follows that the reduced mass (μ) and the force constants (k) hardly change on the substitution. Attention is drawn in particular the a'modes (corresponding styrene modes in parentheses) ν_{30} $(\nu_{26}), \nu_{23} (\nu_{20}), \nu_{21} (\nu_{19}), \nu_{22} (\nu_{18})$ and the a'' modes $\nu_{47} (\nu_{40}),$ ν_{42} (ν_{35}), ν_{41} (ν_{34}), ν_{39} (ν_{32}) and ν_{38} (ν_{31}). The calculated reduced masses and force constants are changed in these cases by less than 1% on the substitution of a hydrogen atom by the methyl group. The pair of accidentally nearly degenerate modes ν_{18} and ν_{19} in styrene is interesting. The calculated frequencies are 1189 and 1185 cm⁻¹, respectively. The corresponding frequencies in BMS are 1189 and 1190 cm⁻¹ (modes ν_{22} and ν_{21}). The reduced mass and force constant for the styrene ν_{18} mode are 1.15 amu and 1.21 mdyn/Å, respectively, and are unchanged in BMS. The mode is identified as a ring breathing mode with a large hydrogen atoms' in-plane motion. For the styrene ν_{19} mode, $\mu = 2.27$ amu and k = 2.34mdyn/Å and the carbon atoms' amplitude is much larger. The changes upon methyl substitution are slightly larger than in the former case, μ =2.12 amu and k=2.23 mdyn/Å in BMS. The analysis thus shows that the calculated degeneracy is due to a simultaneous similar increase of both μ and k, leading to an almost identical frequency for the two modes.

The almost pure methyl modes are the in-plane modes (in parentheses—frequencies in cm⁻¹) ν_{14}'' (1471), ν_{16}'' (1413), and ν_{24}'' (1092) and the out-of-plane mode ν_{36}'' (1400), in addition to the three CH stretch modes (see Table IV). The classification of the three 1400 cm^{-1} methyl bending modes to a' and a'' representations might appear at first sight as somewhat arbitrary, since the methyl group breaks the C_s symmetry. However, inspection of the vector displacements of these modes shows that making these assignments is straightforward; For instance, the ν_{14}'' and ν_{16}'' modes, (calculated 1471 and 1413 cm⁻¹, respectively), show an almost exclusive methyl motion, in which the γ carbon atom is strongly displaced in the molecular plane with respect to the methyl hydrogen atoms, while all other atoms are practically fixed at their equilibrium positions. In the case of the 1400 cm⁻¹ out-of-plane mode (ν''_{36}), inspection shows that the γ carbon moves perpendicular to the molecular

CORRELATION OF S₀ VIBRATIONAL MODES (in plane)

FIG. 10. The correlation between in-plane normal modes of styrene and BMS (excluding CH stretch modes). Primarily vinyl group modes are marked by a triangle, and primarily methyl group modes by diamonds. The dashed lines show styrene modes that correlate with two or more BMS modes, which often may be considered as a mixed vinyl-methyl modes (see the text). The letter designation shown uses Whiffen's notation (Ref. 36) for substituted benzenes.

plane, and that except for the methyl hydrogen atoms, all other atoms are immobile.

The relation between BMS and styrene ground state inplane modes is shown in the correlation diagram, Fig. 10. It is seen that several styrene modes related to the vinyl group can be considered as being split by the substitution into two levels, whose frequency shift with respect to the original vibration is of opposite sign. The lower level largely maintains the vinyl mode character, and the higher frequency one can be considered as a methyl group vibration. Thus, the 553 cm^{-1} (ν_{27}'') mode is split into the 340 and 619 cm^{-1} ones; The 1037 cm^{-1} mode into the 926 and 1092 cm⁻¹ ones, while the 1434 cm⁻¹ vinyl mode, is found to correlate with three BMS modes: the largely methyl ones at 1413 and 1471 cm^{-1} and the vinyl one at 1309 cm^{-1} . Likewise, the out-ofplane modes (not shown in the diagram) 860 and 1081 cm⁻¹ of BMS are correlated with the 988 cm⁻¹ mode of styrene. We note that the ν_{16} mode of styrene (calculated 1303 cm⁻¹) is largely a $H_{\alpha}-H_{c}$ in-plane bend, maintains its character upon the substitution of the trans-H atom by a methyl group, and the nature of the mode hardly changes in BMS (mode ν_{18} , calculated 1326 cm⁻¹).

We conclude this section by noting that in general, the calculation shows a strong correlation between styrene and BMS modes in all three electronic states. Trends found for the changes induced in the nature of vibrational modes of styrene upon electronic excitation are generally found also in BMS. This allows the use of known styrene band assignments to help in making BMS ones, and vice versa. As an example we refer again to the *o*-type vibration, which was found to be mixed with *e*-type one in S_0 , but became a pure C ring breathing in S_1 . This was accompanied by a large increase in the reduced mass, and more so in the force constant of the mode (Table III). This trend is repeated for BMS, and the change in the force constant is even more pronounced: in S_1 the frequency of this mode (ν'_{11} , 1608 cm⁻¹) is calculated to be similar to that of high frequency modes in S_0 , but the force constant is to 19.0 mdyn/Å! [By comparison, the force constant for the ν'_{10} mode (1638 cm⁻¹) is 9.8, and that of the $S_0 \nu''_{11}$ one (1686 cm⁻¹) is 9.8 mdyn/Å]. The very large force constant indicates a strong tightening of the CC breathing mode notion, and is a unique property of the first excited state. In S_2 the force constant for this motion is quite similar to that of S_0 .

D. In-plane-out-of-plane mode mixing

In some cases, a' and a'' modes appear to be mixed. Thus, one finds considerable out-of-plane activity in the nominally ν_{26}'' mode of BMS at 1020 cm⁻¹, the ν_{28}'' mode at 926 cm⁻¹, the ν''_{32} mode (401 cm⁻¹), the ν''_{33} mode (340 cm⁻¹), and the ν''_{34} mode at 144 cm⁻¹. In styrene, the ν''_{28} mode (431 cm^{-1}) shows considerable out-of-plane activity, and the almost iso energetic ν_{39}'' mode (433 cm⁻¹), is strong in plane motion. The ν''_{24} mode (992 cm⁻¹) has a large a''contribution, primarily from out of plane vinyl bending. These mixings arise from the fact that the calculation did not reproduce the planar structure of the styrenes in the ground state, so that the symmetry is not strictly C_s . In view of the experimental evidence that the torsional potential is very flat in styrene, and that BMS may in fact be a nonplanar molecule, we believe that the in- and out-of-plane vibrations may be coupled in the real molecule, since the low frequency vibrations strongly distort the planarity of the molecule.

E. A note on the intensity of some vibronic transitions in the $S_0 \leftrightarrow S_1$ spectrum

In this paper we have often used the notation introduced by Wilson³⁷ and Whiffen³⁶ to describe the approximate nature of styrene vibrational modes. Substitution of the benzene ring reduces the symmetry of the molecule, making the $S_0 \leftrightarrow S_1$ transition less forbidden. Since the double bond of the vinyl group can in principle interact with the ring p electrons by conjugation, the perturbing effect might be expected to be larger in styrene than in substituted benzenes having no p electrons in the substituting group. Indeed, the 0,0 transition of styrene is redshifted from that of benzene to a much larger extent than those of toluene or ethyl benzene, for instance. However, the $S_0 \leftrightarrow S_1$ transition in styrene is still a rather forbidden one, as its small oscillator strength indicates. In benzene, this transition involves an electron transfer from the degenerate e_{1g} to the degenerate e_{2u} molecular orbital; the degeneracy is lifted in styrene, but the fact that the $S_0 \rightarrow S_1$ is calculated to involve partial electron transfer from the two highest occupied MOs to the two lowest unoccupied ones is a reflection of the similarity to the benzene case. The vibronic intensity analysis of the styrene spectrum has been performed on a Franck-Condon basis in a previous

work.^{22,23} It is well known that in benzene the transition is made possible by а Herzberg-Teller coupling mechanism;47,48 therefore, one may expect to find evidence for this coupling in some vibronic bands. We have not carried out an intensity analysis in this work and suffice in making a few qualitative comments. The $S_0 \rightarrow S_1$ transition in benzene is dominated by the $e_{2g}\nu_{6b}$ mode, whose frequency in S_0 is 608 cm⁻¹ and in $S_1 = 522$ cm^{-1.47} In styrene there is a group of bands between $\Delta E = 500$ and 560 cm⁻¹, some of which were assigned⁴² to a multiplet arising from the ν_{26} mode (calculated 587 cm⁻¹, Table II; see Table VII for another possible assignment, also involving this mode). We found³⁹ that the intensity of some of these bands is very sensitive to complexation with rare gas atoms and small molecules in a supersonic jet expansion. The ν_{26} mode is a CC ring breathing mode, similar to the v_{6b} mode of benzene, and this extreme sensitivity to van der Waals forces may reflect Herzberg-Teller activity.

It was stated that the o-type mode appears to undergo a significant frequency change upon electronic excitation. Such changes are usually reflected by a strong Franck-Condon activity in the absorption and emission spectra. The weak band observed in the styrene fluorescence spectrum at 1608 cm⁻¹ (Ref. 42) may indeed be due to this mode, but its weak intensity appears to be at variance with the expected strong activity. Comparison with benzene may help to resolve this apparent discrepancy: the corresponding mode in benzene is the ν_{14} one, which is symmetry forbidden for any one-photon transition, and indeed is not observed in the usual absorption spectrum of benzene. This mode is, however, clearly observed in the two-photon fluorescence excitation spectrum^{43,44} and in fact is by far the strongest band. An unusually large frequency change is found for this mode, from 1309 cm⁻¹ in S_0 to 1566 cm⁻¹ in S_1 ; this large increase is similar to (though somewhat smaller than) the one calculated by us for the o-type mode of styrene. Our result is in line with a recent *ab initio* study on benzene,¹³ in which a similar increase in the ν_{14} mode was calculated for S_1 . Based on the similarity between styrene and benzene, it is predicted that the 1608 cm⁻¹ band will be prominent in the two-photon absorption spectrum of styrene.

V. SUMMARY

The energies, geometries, and vibrational frequencies of the three lowest singlet states of styrene and β -methylstyrene were calculated using an *ab initio* method at the CIS-MP2/ 4-31G level of theory. The ground state appears to be slightly nonplanar, while the two excited states are strictly planar. Good agreement with experiment is obtained for the excitation energies as well as for the oscillator strengths of the $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions. The electric dipole moments of these transition are found to lie along the long axis in the molecular plane, also concurring with experiment.

The first excited singlet arises mostly from an in-ring excitation, the vinyl group being only mildly affected: the double bond maintains its length, while the C1—C α one is shortened a bit. In S_2 , the C1—C α and C α —C β bonds are almost of the same length, and internal rotation around the

bond becomes more hindered, as reflected by a large increase in the torsional frequency.

Most of the calculated vibrational frequencies are found to be in very good agreement with available information. It is therefore concluded that a calculation based on the CIS/4-31G approximation may serve as a good starting point for calculating the vibrational frequencies of styrene derivatives in S_1 . The frequency of the torsional mode (ν_{42} in styrene, v_{51} in BMS), is severely underestimated in the ground state for styrene. This may be related to the fact that the torsional potential in this state is extremely anharmonic, and is very flat for a large range of torsional angles. Interestingly, a fair agreement with experiment is obtained for BMS, for which a nonplanar structure is also calculated. The torsional mode is known to be anharmonic, and the harmonic approximation yields a value close to the experimental $v=0 \rightarrow v=1$ transition frequency. The calculation does not reproduce the strong mode mixing effect between the two lowest lying modes (ν_{41} and v_{42}) claimed to take place in S_1 .¹⁶ A small effect is observed, which appears to become more pronounced in S_2 . This discrepancy may be due to the limited basis set chosen, and a more extensive calculation (for instance including diffusion functions) may be necessary to reproduce the effect, that proved to lead to a satisfactory assignment of the styrene spectrum.

On the whole, the CIS method appears to be very useful for the vibrational analysis of the $S_0 \rightarrow S_1$ fluorescence excitation and emission spectra of styrene, in agreement with a similar work on anthracene.⁴⁰ It thus appears that the Franck–Condon region of aromatic molecules may be mapped with reasonable accuracy using this relatively simple configuration interaction variant.

ACKNOWLEDGMENTS

The Farkas Center for Light Induced Processes is supported by the Minerva Gesellschaft mbH, Munich. This research was supported by the Binational German–Israel James Franck Research Program for Laser Matter Interaction. We are deeply indebted to Dr. J. Michael Hollas for kindly providing us a copy of Ref. 26 prior to its publication, and for very helpful correspondence.

- ¹L. Salem, *Electrons in Chemical Reactions—First Principles* (Wiley, New York, 1982)
- ²I. A. J. Palmer, I. N. Ragazos, F. Bernardi, M. Olivucci, and M. A. Robb, J. Am. Chem. Soc. **115**, 673 (1993).
- ³J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Chem. Phys. **96**, 135 (1992).
- ⁴K. B. Wiberg, C. M. Hadad, J. B. Foresman, and W. A. Chupka, J. Phys. Chem. **96**, 10 756 (1992).
- ⁵ V. A. Walters, C. M. Hadad, Y. Thiele, S. D. Colson, K. B. Wiberg, P. M. Johnson, and J. B. Foresman, J. Am. Chem. Soc. **113**, 4782 (1991).
- ⁶F. Zerbetto and M. Z. Zgierski, J. Chem. Phys. **98**, 4822 (1993).
- ⁷G. Orlandi, P. Palmieri, R. Tarroni, F. Zerbetto, and M. Z. Zgierski, J. Chem. Phys. **100**, 2458 (1994).
- ⁸U. Samuni, S. Kahana, R. Fraenkel, Y. Haas, D. Danovich, and S. Shaik, Chem. Phys. Lett. **225**, 391 (1994).
- ⁹K. Raghavashari, G. W. Trucks, J. A. Pople, and E. Replogle, Chem. Phys. Lett. **158**, 270 (1989).
- ¹⁰ S. Lifson and A. Warshel, J. Chem. Phys. **49**, 5116 (1968); A. Warshel and S. Lifson, *ibid.* **53**, 582 (1970); A. Warshel, in *Modern Theoretical Chemistry*, edited by G. A. Segal (Plenum, New York, 1977), Vol. 7, Part A.

- ¹¹ M. J. Frisch, GAUSSIAN 92, Revision F2 (Gaussian, Inc., Pittsburgh, PA, 1992).
- ¹²S. Zilberg, U. Samuni, R. Fraenkel, and Y. Haas, Chem. Phys. 186, 303 (1994).
- ¹³ P. Swiderek, G. Hohlneicher, S. A. Maluendes, and M. Dupuis, J. Chem. Phys. **98**, 974 (1993).
- ¹⁴ W. Drescher, S. Kendler, S. Zilberg, E. Zingher, H. Zuckermann, and Y. Haas, J. Chem. Phys. **101**, 11082 (1994).
- ¹⁵Y. Haas, S. Kendler, E. Zingher, H. Zuckermann, and S. Zilberg, J. Chem. Phys. **103**, 37 (1995).
- ¹⁶ J. M. Hollas, E. Khalilipour, and S. N. Thakur, J. Mol. Spectrosc. 73, 240 (1978).
- $^{17}\mbox{J.}$ M. Hollas and T. Ridley, Chem. Phys. Lett. 75, 94 (1980).
- $^{18}\mbox{J.}$ M. Hollas and T. Ridley, J. Mol. Spectrosc. 89, 232 (1981).
- ¹⁹J. M. Hollas, H. Musa, T. Ridley, P. H. Turner, and K. H. Weisenberger, J. Mol. Spectrosc. 94, 437 (1982).
- ²⁰W. Caminati, B. Vogelsanger, and A. Bauder, J. Mol. Spectrosc. **128**, 384 (1988).
- ²¹C. W. Bock, M. Trachtman, and P. George, Chem. Phys. 93, 431 (1985).
- ²²R. J. Hemley, D. G. Leopold, V. Vaida, and M. Karplus, J. Chem. Phys. 82, 5379 (1985).
- ²³ R. J. Hemley, U. Dinur, V. Vaida, and M. Karplus, J. Am. Chem. Soc. 107, 836 (1985).
- ²⁴M. Head Gordon and J. A. Pople, J. Phys. Chem. 97, 1147 (1993).
- ²⁵R. Hargiti, P. G. Szalay, G. Pongor, and G. Foragasi, J. Mol. Struct. (Theochem.) **306**, 293 (1994).
- ²⁶W. E. Sinclair, H. Yu, D. Phillips, R. D. Gordon, J. M. Hollas, S. K. lee, and G. Mellau J. Phys. Chem. **99**, 4386 (1995).
- ²⁷A. Hartford and J. R. Lombardi, J. Mol. Spectrosc. 35, 413 (1970).
- ²⁸T. R. Gilson, J. M. Hollas, E. Khalilipour, and J. C. Warrington, J. Mol. Spectrosc. **73**, 234 (1978).
- ²⁹Following the prevailing convention (Refs. 16 and 28), the normal modes of styrene and BMS are described under the assumption that both molecules belong to the C_s point group. This approximation is strictly correct for styrene in the S_1 state, and nearly true for styrene in S_0 and for BMS in both states, neglecting the fact that some methyl hydrogen atoms are out of the plane defined by the carbon skeleton. Consequently, the normal vibrational modes transform either as a' (in-plane modes) or as a'' (outof-plane ones). Ground state vibrational modes are designated by a double dash (") and S_1 levels by a single dash ('). The notation used for the vibrational modes is therefore as follows: For styrene, the 29 in-plane vibrations are numbered 1-29, in decreasing order of the frequency, and the 13 out-of-plane modes are numbered 30-42. This convention holds for the ground (S_0) state order. The C1-C α torsional mode, having the lowest frequency in S_0 , is thus the ν''_{42} mode. In BMS, the 34 in-plane vibrations are likewise numbered 1-34, and the 17 out-of-plane ones, are numbered 35-51, in decreasing order of the vibrational frequencies. The numbering sequence in each electronic state is according to the order found in the calculation (the only exception being the v_{30} and v_{31} order change, see the caption to Fig. 3); Since mode crossing and mixing takes place, the correlation diagrams (Figs. 3 and 7) should be consulted for the approximate nature of the excited state modes in terms of S_0 modes.
- ³⁰S. Tsuzuki, K. Tanabe, and E. Osawa, J. Phys. Chem. **94**, 6175 (1990).
- ³¹G. L. Bendazzoli, G. Orlandi, P. Palmieri, and G. Poggi, J. Am. Chem. Soc. **100**, 392 (1978).
- ³²G. Orlandi, P. Palmieri, and G. Poggi, J. Chem. Soc., Faraday Trans. 2, 77, 71 (1981).
- ³³ W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
- ³⁴ J. A. Pople, A. P. Scott, M. W. Wong, and L. Radom, Isr. J. Chem. **33**, 345 (1993).
- ³⁵D. G. Leopold, R. J. Hemley, V. Vaida, and M. Karplus, J. Chem. Phys. 75, 4758 (1981).
- ³⁶D. H. Whiffen, J. Chem. Soc. **1956**, 1350.
- ³⁷E. B. Wilson, Phys. Rev. **45**, 706 (1934).
- ³⁸D. A. Condirston and J. D. Laposa, J. Mol. Spectrosc. **63**, 466 (1976).
- ³⁹E. Zingher, H. Zuckermann, and Y. Haas (unpublished).
- ⁴⁰S. Zilberg and Y. Haas (in preparation).

- ⁴¹H. Parker and J. R. Lombardi, J. Chem. Phys. 54, 5095 (1971).
- ⁴² J. A. Syage, F. Al Adel, and A. H. Zewail, Chem. Phys. Lett. 103, 15 (1983).
- ⁴³L. Wunsch, F. Metz, H. J. Neusser, and E. W. Schlag, J. Chem. Phys. 66, 386 (1977).
- ⁴⁴J. R. Lombardi, R. Wallenstein, T. W. Hänsch, and D. M. Friedrich, J. Chem. Phys. 65, 2357 (1976).
- ⁴⁵S. S. Shaik, P. C. Hiberty, G. Ohanessian, and J.-M. Lefour, J. Phys. Chem. 92, 5086 (1988).
- 46 Y. Haas and S. Zilberg, The $\nu_{14}(b_{2u})$ mode of benzene in S_0 and S_1 and the distortive nature of the π electron system: theory and experiment, ⁴⁷ A. Albrecht, J. Chem. Phys. **33**, 169 (1960). ⁴⁸ C. S. Parmenter, Adv. Chem. Phys. **22**, 365 (1972).