ISOMERIZATIONS OF BENZANNELATED C₉H₁₀ BICYCLIC SYSTEMS INTO CYCLONONATETRAENES. INSIGHT INTO THE BEHAVIOUR OF MEDIUM-SIZED CONJUGATED RINGS¹

ITAMAR WILLNER and MORDECAI RABINOVITZ*

Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

(Received in UK 4 September 1978)

Abstract—Dibenzobicyclo[5.2.0]non-8-ene 9 was prepared from 2,3:6,7-dibenzocycloheptatriene as starting material. The bicyclic system 9 isomerized thermally to give *cis,trans*- and *cis,cis*-1,2:7,8-dibenzocyclononatetraene. The formation of *cis,trans*-1,2:7,8-dibenzocyclononatetraene occurs in an allowed concerted electrocyclic process of general interest.

Medium-sized conjugated ring systems are sensitive to valence bond isomerizations.^{2,3} This characteristic has been attributed to the relief of the steric interactions between the hydrogen atoms at the ring juncture. Cyclononatetraene (CNT) 1 manifests this property by its isomerization to a bicyclic system.⁴ This behaviour is attributed to *peri* H-H repulsions, predicted theoretically to be significant.⁵ However, bicyclic systems were converted into the monocyclic cyclononatetraenide anion 2, despite the steric interactions present in the latter.⁶ This phenomenon is assigned to the aromatic stabilization of 2, being a 10π -electron Huckeloid system.

Benzene annelation of 1 has been shown^{7,8} to inhibit the double bond isomerization since this process involves the disruption of aromaticity in the fused benzene rings. On the other hand steric effects have been shown to be significant in the formation of aromaticity of benzene annelated cyclononatetraenide anions.^{74,84,9} We wish to report on the application of benzene annelation to the investigation of the chemistry of the cyclononatetraene system.

Cyclononatetraene 1 has been shown¹⁰ to be very unstable and to undergo a thermal disrotatory electrocyclic process to cis-8,9-dihydroindene 3. Vogel¹¹ suggested that the thermal isomerization of bicyclo[6.1.0]nonatriene 4 into 3 proceeds via the intermediacy of 1. Since then, it has been established¹² that in the thermolysis of 4, 3 is followed by its structural isomer *trans*-8,9-dihydroindene 5. Such bond reorganizations have been observed in a variety of bicyclic systems, where the intermediacy of a medium-sized conjugated monocyclic system was suggested.²⁻⁴ While the formation of 3 is suggested^{10,13} to originate from cis^4 -CNT 1, the formation of the *trans* fused system viz. 5 has to be accounted for. Its formation can be rationalized¹⁴ by the intermediacy of a mono-*trans* cyclononatetraene (CNT) system 6 or 7. A number of pathways were considered^{13,15,16} for the transformation of 4 into 3 and 5, and their heteroanaloes.

Several attempts to trap the monocyclic isomers and their stereochemistry were claimed.^{17,18} However, objections regarding these conclusions were reported.¹⁹ Furthermore, the stepwise transformations suggested could not be verified and remain an enigma. Only one pathway, i.e. $4 \rightarrow$ (bicyclo[5.2.0]nonatriene) $8^{16} \rightarrow (cis, trans, cis^2$ -CNT) $7 \rightarrow 5$, includes all the intermediates which account for all the products in a single stepwise process.

The problematic behaviour of 4 during the thermolysis seems to be a key problem in the isomerizations of bicyclic systems via intermediates of medium-sized conjugated rings. The fact that bicyclo[6.1.0]nonatriene 4 rearranges to 8 encouraged us to explore the thermolysis of the dibenzene annelated intermediate i.e. dibenzobicyclo[5.2.0]non-8-ene 9. This compound seems to be an adequate substrate in the establishment of a pathway

2359

Scheme 1.

similar to that of $8 \rightarrow 7 \rightarrow 5$ due to the expected stabilization of the corresponding intermediary dibenzocyclononatetraene isomers.^{7,8}

Dibenzobicyclo[5.2.0]non-8-ene 9 was prepared as outlined in Scheme 1. 2,3:6,7-Dibenzocycloheptatriene 10, obtained by an improved process by the reduction of dibenztropone with LiAlH_-AlCl₃, was irradiated with maleic anhydride, benzil was added as a sensitizer. The resulting cycloadduct 11 was hydrolyzed with base to form the diacid 12. In the mass spectrum the expected molecular ion (m/e = 308) appears. The successive loss of water, carbon dioxide, carbon monoxide and acetylene occurred to form the stable cycloheptatrienyl ion (m/e = 192, 100%). The infra-red spectrum of 12 shows the carbonyl frequency at 1700 cm⁻¹ while a broad hydroxyl band is observed at $3100 \,\mathrm{cm}^{-1}$. Oxidative bisdecarboxylation of 12 applying Grob's method²⁰ (Pb(OAc)₄) led to the formation of 9(m.p. 70°). The structure of 9 was confirmed by its spectral properties. The mass spectrum reveals the molecular ion (m/e = 218, 100%), and fragmentation of acetylene (192, $M-C_2H_2$) thus indicating the presence of a fused cyclobutene ring. The NMR spectrum is rather peculiar and consists of an aromatic multiplet, two broad bands at 4.02 and 6.45 ppm and a singlet at 4.54 ppm. This NMR spectrum is temperature dependent and will be discussed elsewhere. The low yield (25%) of the bis-decarboxylation process encouraged us to look for alternate routes. Bisdecarboxylation with lead tetraacetate in presence of oxygen^{20d} resulted in a slight increase (31%) of 9. However, electrochemical bisdecarboxylation²¹ resulted in a decrease in the yield of 9. Applying Paquett's recently pub-lished method²² for bisdecarboxylation of vic.dicarboxylic acids on 12 we isolated only 1,2:5,6dibenzocycloheptatriene 10 in 45% yield. We assume that the formation of 10 originates from a cyclo-reversion reaction of the intermediary 9. These results indicate the facile fragmentation of an acetylenic component from 9.

Thermolysis of 9 at 290°C in order to obtain the isomerization reaction resulted in a mixture of three products which were separated. One product was identified as 1,2:3,4-dibenzocycloheptatriene 10 (NMR, TLC, and mixed m.p. with an authentic sample). This compound originates from the formerly discussed cycloreversion reaction which further emphasizes the tendency of this system to lose acetylene. The two other products showed the same molecular ion and a closely related mass spectrum. The elemental analysis established a similar composition $(C_{17}H_{14})$. The fact that the molecular ions of the these products did not lose acetylene indicates that they are isomers of the parent hydrocarbon viz. 9. The structure of these isomers was fully confirmed by their proton NMR spectra. The spectrum of one isomer is attributed to cis.trans-1.2:7.8-dibenzocyclononatetraene The vinylic proton appears as an ABCD spectrum. Proton H. appears at 6.60 ppm (double doublet). Proton H_b appears as a triplet of doublets at 6.46 ppm. The triplet of doublets at 5.95 ppm is assigned to proton H_c while the double doublet at 6.15 ppm is assigned to proton H_d. The ninemembered benzylic protons H_a and H_a, appear as an AB pattern ($\delta_a = 4.24$, $\delta_B = 3.46$ ppm, J = 14 Hz). This assignment was confirmed by double resonance experiments. For example, irradiation at 6.46 ppm converted the pattern of H_c into a doublet (J = 16 Hz) split further by proton H_a (J = 1 Hz), H_a appears as a narrow doublet as a result of allylic splitting by He and the allylic coupling of He disappears. Irradiation at 3.46 ppm converted the doublet at 4.24 ppm into a singlet. The vinylic ABCD pattern of 13 clearly shows two vinylic coupling constants $J_{ab} = 11$ Hz and $J_{cd} = 16$ Hz. The appearance of two vinylic coupling constants (3J) and their magnitude strictly confirm the existence of a cis, trans double bond configuration in 13. Similar coupling constants were obtained in a series of cis and trans benzannelated [11]²³ and [13]² 'annulenes. The appearance of an AB pattern for

protons He and He suggests a rigid asymmetric configuration for 13. Drieding models similarly suggest a non-flexible configuration of 13. The other isomer was identified as cis, cis-1,2:7,8-dibenzycyclononatetraene 14. Its simple NMR spectrum consists of a singlet at 4.38 ppm assigned to protons H_c and H_c and a single AB pattern of the four vinylic protons ($\delta_A = 5.89$, $\delta_B = 6.23$ ppm, J = 12 Hz). The benzene ring protons appear as an unresolved multiplet at 6.95-7.15 ppm. The coupling constant of the vinylic AB spectrum of 14 (J = 12 Hz) is in agreement with an all-cis configuration. This assignment is further supported by the similar coupling constants found in other benzene annelated cyclononatetraene with a cis configuration.^{8,9} Dreiding model of 14 indicated a flexible nonplanar molecule. The appearance of protons H_e and H_c as a singlet suggests a fast dynamic exchange which averages the shifts of these protons. However, experiments at low temperatures (up to -90°C) did not show any significant change, suggesting a low barrier for this ring inversion process.

A gradual increase in temperature of the thermolysis of 9 affected a concomitant disappearance of 13 and enrichment of isomer 14 in the reaction mixture. When 9 was thermolysed at $300-320^{\circ}$ the ratio of the isomers 14/13 gradually increased. The thermolysis of 13 itself at 310° resulted in the sole formation of 14. These results are rationalized by the mechanism suggested previously for the thermal isomerization of 4.

These results reveal that 9 undergoes, in line with the Woodward-Hoffmann rules,²⁵ a preliminary conrotatory thermal electrocyclic isomerization into the *cis,trans* isomer 13. In turn this isomer undergoes a configuruation isomerization of the *trans* double bond into the all *cis* isomer 14. It can be seen that these conclusions confirm the mechanism proposed for the isomerization of 4 to 3 and 5 via 8. These results therefore advocate that benzene annelation is an efficient tool for investigating the stepwise isomerization of bicyclo[5.2.0]nonatriene 8 skeleton into a *cis*⁴-cyclononatetraene 1.

In view of the inability to detect the intermediary

monocyclic medium size conjugated ring systems during the isomerization of the related bicyclic systems, it seems that benzene annelation may serve as a stabilizer of the diverse configurations of its monocyclic counterpart. The formation of a cis, trans configuration of the "butadiene" part of 13 upon thermal ring opening of the fused polycyclic system 9 should be noted. Thermolysis of dibenzo-annelated bicyclo[3.2.0] and bicyclo[4.2.0] skeletons into their benzene annelated monocyclic derivatives always furnished the butadiene "bridge" in a cis, cis configuration.^{26,27} For example the thermolysis of 15 and 17 afforded pleadiene 16²⁶ and 1,2:3,4-dibenzocyclooctatetraene 18^{27a} respectively. At first glance it seems that these isomerizations proceed via a disallowed or a stepwise mechanism. A biradical mechanism has been put forward to account for these results.²⁸ However, the results presented here suggest an allowed concerted electrocyclic pathway viz. a preliminary conrotatory process into a cis, trans "butadiene bridge" followed by the trans double bond isomerization into the respective cis configuration. This suggestion takes into account the high temperatures (ca. 400°) in which these transformations are conducted.

In view of the suggestion that bicyclo-[5.2.0]nonatriene **8** is an intermediate in the thermal rearrangement of bicyclo[6.1.0]nonatriene **4** to cyclononatetraenes, we studied the possible isomerization of dibenzobicyclo[6.1.0]nonatriene **19** into cis^2 -1,2:5,6-dibenzocyclononatetraene **20**. While bicyclic C₉H₁₀ systems with one benzene annelation are known to undergo thermal and photochemical isomerizations,²⁹ the isomerization of **19** would become impossible since the preliminary [3.3]sigmatropic shift may be avoided.

The synthetic approach to 19 was based on a carbene addition to 1,2:5,6-dibenzocyclooctatetraene 21. Experiments to add dihalocarbenes to 21 in diverse methods, including phase transfer catalysis³⁰ and crown ethers³⁰ failed. Furthermore, experiments to add methylene to 21 by the Simmons-Smith reaction³¹ failed as well. On the

other hand by applying ethyldiazoacetate in the presence of copper-bronze on 21 the adduct ethylexo-1,2:5,6-dibenzobicyclo[6.1.0]nonatriene-9carboxylate 22 was formed,³² whose structure elucidation was based on its spectral characteristics. The mass spectrum reveals the molecular ion (m/e = 290) and the product of fragmentation of the cyclopropane component (m/e = 203). The infrared spectrum of 22 reveals the carbonyl stretching at 1720 cm⁻¹ while the ultraviolet spectrum shows a cis-stilbene chromophore. The NMR spectrum confirms the proposed stereochemistry for 22. Protons H_7 , H_8 and H_9 show an AX_2 pattern: protons H₇ and H₈ appear at 2.93 ppm and H₉ appears at 2.27 ppm. The coupling constant of the cyclopropane protons $(J_{AX} = 5 Hz)$ confirms the exo configuration and is in good agreement with other exo-ethoxycarbonylcarbene adducts.³³ An additional product isolated from the reaction mixture was identified as diethylfumarate (12%). This product probably arises from a dimerization of the carbenoid species.³² Compound 22 showed high stability upon heating. Thermolysis of 22 at 220° fully recovered the starting material despite the fact that polycyclic ethoxy-carbonylcarbene adducts of naphthalene or acenaphthene were isomerized under similar conditions.³⁴ At higher temperatures compound 22 was decomposed. The application of rhodium complexes³⁵ in order to isomerize 22 to 23 failed as well. These failures to isomerize 22 as attributed to the effect of the benzannelation which avoids a primary [3.3]sigmatropic rearrangement of the bicyclo[6.1.0]nonatriene skeleton.

Another attempt to isomerize 22 was based on its deprotonation. The formed anion may in principle²⁵ undergo a conrotatory ring opening (cyclopropyl to allyl anion), into *cis,trans*-1,2:5,6dibenzocyclononatetraenyl anion analogous to the parent system which undergoes this process with great ease.³⁶ It should also be noted that the *cis,trans* anion can isomerize into the all-*cis* anion similarly to the monocyclic aromatic anion.³⁶ Treatment of 22 with lithium isopropylcyclohexyl amide³⁷ in THF-d₈ resulted in the formation of the anion derived from 22 and no isomerized anionic species could be detected. Upon its quenching with water only a mixture of 22 and its *endo* isomer was

obtained. The assignment of the stereochemistry of the endo isomer of 22 was deduced from the proton NMR of this compound. The AX₂ pattern of the cyclopropyl protons exhibited a coupling constant $(J_{AX} = 8.5 \text{ Hz})$ characteristic of an endo configuration and in agreement with other ethoxycarbonylcarbene adducts to which an endo configuration has been assigned,³³ thus epimerization at C₉ took place. This epimerization is explicable by a nonstereoselective protonation process of the anion. The expected isomerization of the anion of 22 into the dibenzocyclononatetraenyl anions did not take place although these anions are expected to be aromatic due to 10π -electron delocalization of the anionic component. The failure of this isomerization may be attributed to steric interactions. The peri H-H repulsions have been previously shown to be significant in medium size rings, especially in the cyclononatetraenyl anion.^{5,9} While isomerization into trans-cyclononatetraenyl anion is favoured as peri H-H trans repulsions are removed, the conrotatory isomerization of the anion of 22 into the trans dibenzocyclononatetraenyl anion does not remove peri H-H repulsions and simultaneously unfavoured forms an trans configuration. Moreover, this trans configuration forces the bulky ethoxycarbonyl group into the inner part of the framework thus forming additional repulsion interactions.

CONCLUSIONS

Benzannelation of bicyclic C_9H_{10} systems has been shown here to be an efficient tool in the study of the isomerization pathway of these systems. The thermolysis of dibenzobicyclo[5.2.0]nonatriene 9 in cis, transconrotatory reaction to the dibenzocyclononatetraene 13 and the configurational isomerization of 13 to 14 proved that the thermolytic behaviour of the parent hydrocaron 8 could be followed. The observation that the cis, trans double bonds of 13 are isomerized to the all-cis isomer 14 shows that the Woodward-Hoffmann rules are obeyed in the isomerization of 9 thus shedding light on the thermolytic pathway of polycyclic systems including a bicylobutene component.

Acknowledgements—A grant from the Israel Commission for Basic Research is gratefully acknowledged. The 300 MHz spectra were obtained at the Department of Chemistry of the University of Manchester. We would like to thank Dr. D. Shaw, Dr. R. Warren, Mr. D. Moorcraft and Mr. F. Heatley for the spectra.

EXPERIMENTAL

Melting points were taken on a Fisher-Johns apparatus (uncorrected). UV spectra were recorded with the aid of Unicam S.P. 800 spectrometer. Infrared spectra were recorded with a Perkin-Elmer Model 337 spectrometer. ¹H NMR spectra were recorded on a Varian HA-100D spectrometer at 100 MHz, and on a Varian SC-300 at 300 MHz, the reported chemical shifts (8) are downfield relative to TMS. Mass spectra were recorded with an Atlas MAT CH 4 spectrometer at 70 eV

1,2:5,6-Dibenzobicyclo[5.2.0]nonadiene-8,9-dicarboxilic acid 12.

Into 1 litre irradiation flask equipped with a condenser, stirrer and a gas inlet were placed 5g (26 mmol) of dibenzo[a,e]cycloheptadiene 10 2.25g (26 mmol) of recrystallized maleic anhydride, 400 mg benzil (sensitizer), and 800 ml of dry hexane. N₂ was bubbled into the solution and the solution was irradiated with a Hanovia 450 W lamp during 5 h. The precipitate was filtered and transferred into a solution of 85 ml of 1.46 M KOH. This solution was refluxed for 3 hours. After treating the solution with charcoal it was filtered, and acidified with dilute HCl. The white precipitate, 5.2g, was filtered, dried and used without further purification (yield 64%). A sample was recrystallized from acetone-water (1:1); m.p. 189°; (Analysis calc. for C₁₉H₄O₄: C, 74.02; H, 5.19%; found: C, 73.70; H, 5.43); IR^{Nutol}: 3200 (broad), 1700, 1380, 1260, 1230, 765, 740, 615 cm⁻¹; MS m/e: 308(M), 290, 262, 255, 193, 192 (100%), 188.

1,2:5,6-Dibenzobicyclo[5.2.0] non-8-ene 9

(a) Decarboxylation with lead tetraacetate. A mixture of 1.25 g (4 mmol) of the diacid in 40 ml of dry benzene and 0.8 ml of pyridine was heated under nitrogen to 50°C. To the stirred solution was added portionwise 2.1 g (4.6 mmol) of lead tetraacetate. After the evolution of CO_2 ceased, the solution was refluxed for an additional 2 hours. The dark mixture was poured over dilute nitric acid (5%) and extracted with dichloromethane. The organic layer was separated, washed with dilute nitric acid (5%) and water, dried and evaporated. The oil obtained after evaporation was chromatographed over 100 g Florisil. Elution with hexane resulted in a yellow oil which was crystallized from methanol; 230 mg of 9 were obtained; m.p. 72° (yield 25%); (Analysis calc. for $C_{17}H_{14}$: C, 93.58; H, 6.42. Found: C, 92.75; H, 6.30); IR $\nu_{\text{Max}}^{\text{Max}}$ 2970, 1620, 1300, 1220, 750, 690 cm⁻¹; UV $\lambda_{\text{cm}}^{\text{cm}}$: 255 (e = 17.500), 295^s nm(2400); MS m/e = 218(100%), 217, 215, 202, 201, 192, 190.

(b) Decarboxylation with lead tetraacetate under oxygen. A mixture of 4 g (13 mmol) of the diacid 12 in 40 ml dry pyridine (distilled over KOH) was heated to 67°C. Oxygen was bubbled for 15 minutes and 14.7 g (33 mmol) of lead tetraacetate was added portionwise. After similar treatment to that described in (a) 900 mg of 9 were obtained. (yield 31%).

(c) Electrolytic decarboxylation²¹. Into the electrolytic cell equipped with a condenser, magnetic stirrer and two platinum electrodes were placed 1.47 g (4.7 mmol) of the diacid **12**, 100 ml of a pyridine-water solution (15:85) and 1.25 ml triethylamine. The solution was stirred for 15 minutes and the electrodes were connected to the power. The cell was cooled with an ice bath and electrolysis was conducted at 150 V and 0.5 A, while stirring. The result-

ing mixture was poured over dilute hydrochloric acid (10%). After extraction with dichloromethane and similar treatment to that described in part (a), 120 mg of 9, were obtained. (yield 12%).

Thermolysis of 9: Preparation of cis, trans-1,2:7,8dibenzocyclononatetraene 13 and cis, cis-1,2:7,8dibenzocyclononatetraene 14

The thermolysis oven was equipped with 20 cm glass tube (diameter 1.5 cm) filled with glass chips (1-2 mm)diameter). One of the tube ends was connected to the receiving flask, inseted in a cooling bath, while the other end was connected to a capillary T-shaped tube closed at the top with a sleeve stopper. The capillary sidearm was connected to N₂ through a reduction valve. The injector contains the solution to be pyrolyzed and was fixed to a plate which moved horizontally by a mechanical preadjusted constant speed system. Thus, a constant injection rate of the solution into the glass tube in the oven was achieved. The oven has an inside thermocouple which enabled temperature regulation within $\pm 1^{\circ}$ C.

The oven was heated prior to the pyrolysis to 290°C for 40 minutes in order to achieve constant temperature, while the system was flushed with nitrogen. Into the injector was placed a soluton of 150 mg (0.5 mmol) of 1,2:5,6-dibenzobicyclo[5.2.0]non-8-ene 9 in 15 ml dry benzene. The solution was injected into the oven at a rate of 1 ml/min followed by a nitrogen steam through the sidearm and the thermolysis was conducted for 15 min. The oven was then cooled to room temperature and the glass tube and glass chips were washed with dichloromethane which was combined with the benzene solution which condensed in the receiving flask. The brown suspension was filtered and the solution was evaporated to give a brown oil, 450 mg of the oil were column chromatographed over SiO₂ (150 cm height diameter 2 cm), elution with hexane. The eluents were transferred through a UV detector ($\lambda = 280$ nm).

Evaporation of the first fraction yielded 58 mg of 10 (12%); m.p. 106°; ¹H NMR (CDCl₃): 7.3 (m, 8H), 6.99 (s, 2H), 3.70 ppm (s, 2H).

Evaporation of the second fraction afforded 75 mg of cis,cis-1,2:7,8-dibenzocyclononatetraene 14 an oil which did not crystallized (16% yield); (Analysis calculated for $C_{17}H_{14}$: C, 93.58; H, 6.42. Found: C, 92.10; H, 6.75); IR ν_{maxi}^{nest} : 2920, 1630, 1490, 1030, 780, 745 cm⁻¹. UV λ_{cmkx}^{CH} : 255(e = 12,000), 290°(8,500). MS m/e = 219, 219(M, 100%), 217, 215, 201, 202. ¹H NMR (CDCl₃): 6.95-7.15(m, 8H), 6.25(d, 2H, J = 12 Hz), 5.89(d, 2H, J = 12Hz), 4.38 ppm (s, 2H).

Evaporation of the third fraction yielded 68 mg of cis, trans-1,2:7,8-dibenzocyclononatetraene 13 (oil, 15% yield); (Analysis calc. for $C_{17}H_{14}$: C, 93.58; H, 6.42. Found: C, 91.70; H, 6.88); IR ν_{max}^{naat} : 2960, 1600, 1520, 1060, 960, 930, 790, 770; UV $\lambda_{max}^{C_1H_{12}}$:258(11,000), 280⁴(6,500), 335(1,800); MS m/e: 219, 218(M, 100%), 217, 215, 202, 201; ¹H NMR (CDCl₃): 7.0-7.8 ppm (m, 8H), 6.60(dd, 1H, J₁ = 11 Hz; J₂ = 1 Hz), 6.46(ddd, 1H, J₁ = 11 Hz; J₂ = 1 Hz), 6.46(ddd, 1H, J₁ = 16 Hz; J₂ = 1 Hz), 5.95(ddd, 1H, J₁ = 16 Hz; J₂ = 2.5 Hz; J₃ = 1 Hz), 3.46 ppm (d, 1H, J = 14 Hz).

Thermolysis of a solution of 70 mg (0.32 mmol) of cis,trans-1,2:7,8-dibenzocyclononatetraene in 5 ml of dry benzene 13 conducted under similar conditions as described above afforded a mixture of 13 and 14 (identified by ¹H NMR), no 1,2:5,6-dibenzocycloheptatriene (10) was detected.

Pyrolysis of 180 mg (0.8 mmol) of 13 in 10 ml of dry benzene at 365° in a similar way to that described above yielded 40 mg of 1,2:5,6-dibenzocycloheptatriene 10 (yield 26%) and 30 mg of *cis,cis*-dibenzocyclononatetraene 14, yield 14%.

Ethyl-exo-1,2:5,6-dibenzobicyclo[6.2.0]nonatrien-9-carboxylate 22.

A mixture of 900 mg (4.4 mmol) of 1,2:5,6dibenzocyclooctatetraene 21 and 75 mg of copper-bronze were heated under nitrogen to 150-155°C. Into the stirred melt were injected 0.7 ml (6.7 mmol) ethyldiazoacetate during 2 h. The mixture was stirred for an additional 1 h and afterwards cooled to room temperature. The resulting oil was extracted with dichloromethane, filtered and evaporated. The residue was chromatographed on 60 g SiO₂. Elution with 200 ml of benzene afforded 250 mg recovered 22 (28%). Further elutions with benzene afforded 40 mg of 22 as an oil (34% yield); (Analysis calculated for $C_{20}H_{18}O_2$: C, 82.75; H, 6.20. Found: C, 82.37; H, 6.15); IR ν_{max}^{nest} : 2980, 1730, 1490, 1380, 1300, 750 cm⁻¹; ¹H NMR (CDCl₃): 7.10 (m, 8H), 6.80 (s, 2H), 4.28 (q, 2H, J = 8Hz), 2.93 (d, 2H, J = 5.0 Hz), 2.27 (t, 1H, J = 8.0 Hz), 1.3 ppm (t, 3H, J = 5.0 Hz); MS m/e: 290, 218, 217, 203, 202, 148, 142 (100%), 141. Elution with chloroform afforded 96 mg of diethylfumarate (yield 12%) identified by comparison with an authentic sample.

Basic isomerization of ethyl-exo-1,2:5,6-dibenzobicyclo[6.1.0]nonatriene-9-carboxylate 22. An attempt to prepare cis, trans-dibenzocyclononatetraenyl anion

A solution (under nitrogen) of 0.46 ml (2.5 mmol) of N-isopropylcyclohexylamine (distilled from CaH₂) in 10 ml dry THF was cooled to -65° C and to it was added 1.11 ml (2.5 mmol) of a 2.1 M solution of *n*-butyl lithium in cyclohexane and stirred for another 15 minutes. Into the solution was added with stirring a solution of 300 mg of 22 (0.1 mmol) in 2 ml dry THF. The solution temperature was raised to -40° C and stirred for an additional 1 h, and then quenched with 15 ml of water. The layers were separated and the organic phase was washed with water, dried and evaporated. The residue consisted of a mixture of the two isomers endo and exo 22. ¹H NMR of the endo isomer of 22 (CDCl₃): 7.1 (m, 8H), 6,65 (s, 2H), 4.20 (q, 2H, J = 5.0 Hz), 3.10 (d, 2H, J = 8.5 Hz), 1.90 (t, 1H, J = 8.5 Hz), 1.42 ppm (t, 3H, J = 5.0 Hz).

REFERENCES

- ¹For a preliminary report see: I. Willner and M. Rabinovitz, *Tetrahedron Letters* 3335 (1976).
- ²For general reviews see: ^aS. Masamune and N. Darby, Accounts Chem. Res. 5, 272 (1972); ^bA. G. Anastassiou, Pure Appl. Chem. 4, 691 (1975).
- ³S. W. Staley, Intra-Science Chemistry Reports 5, 149 (1971).
- ^{4a}L. T. Scott and M. Jones, Chem. Rev. 72, 181 (1972);
- ^bJ. E. Baldwin, Accounts Chem. Res. 5, 402 (1972).
- ⁵H. E. Simmons and J. H. Williams, J. Am. Chem. Soc. **86**, 3222 (1964).
- ^{6a} E. A. LaLancette and R. E. Benson, *Ibid.* 85, 2853 (1963); ^b*Ibid.* 87, 1941 (1965); ^cT. J. Katz and P. J. Garratt, *Ibid.* 85, 2852 (1963); ^d*Ibid.* 87, 5194 (1964).
- ^{7a} P. J. Garratt and K. A. Knapp, J. Chem. Soc. Chem. Commun. 1715 (1970); ^bM. Rabinovitz, A. Gazit and E. D. Bergmann, *Ibid.* 1430 (1970).
- ^{8a} M. Rabinovitz and A. Gazit, Tetrahedron Letters 721 (1972). ^bM. Rabinovitz and I. Willner, *Ibid.* 721 (1974).
- ^{9a} A. G. Anastassiou and E. Reichmanis, J. Chem. Soc. Commun. 149 (1975). ^bA. G. Anastassiou and R. C. Griffith, J. Am. Chem. Soc. 96, 611, (1974). ^cA. G. Anastassiou and E. Reichmanis, Angew Chem. 86, 784 (1974); Angew. Chem. Internat. Edit. 13, 728 (1974). ^dSee also: I. Willner, A. Gamliel and M. Rabinovitz, Chemistry Letters 1273 (1977).
- ¹⁰P. Radlick and G. Alford, J. Am. Chem. Soc. **91**, 6529 (1969).
- ¹¹E. Vogel and H. Kiefer, Angew. Chem. 73, 548 (1961); 74 829 (1962).

- ¹²W. Grimme, Chem. Ber. 100, 43 (1967); 100, 113 (1967).
- ¹³P. Radlick and W. Fenical, J. Am. Chem. Soc. 91, 1560 (1969).
- ¹⁴S. W. Staley and T. J. Henry, Ibid. 91, 7787 (1969).
- ^{15a}S. Masamune and N. T. Castelucci, Angew. Chem. 76, 569 (1964). ^bA. G. Anastassiou, R. L. Elliott and A. Lichtenfeld, Tetrahedron Letters 4569 (1972); ^cA. G. Anastassiou, R. L. Elliott, H. Wright and J. Clardy, J. Org. Chem. 38, 1959 (1973).
- ¹⁶P. Radlick, W. Fenical and G. Alford, Tetrahedron Letters 2707 (1970).
- ¹⁷A. G. Anastassiou and R. C. Griffith, J. Am. Chem. Soc. **93**, 3083 (1971).
- ^{18a} J. E. Baldwin and D. B. Bryn, *Ibid.* 96, 319 (1974);
 ^bG. Boche, H. Weber and J. Benz, Angew. Chem. 86, 238 (1974).
- ^{19a}L. A. Paquette, M. J. Broadhurst, L. K. Reed, and J. Clardy, J. Am. Chem. Soc. **95**, 4639 (1973); ^bL. A. Paquette, M. J. Broadhurst, C. Lee and J. Clardy, *Ibid.* **95**, 4647 (1973).
- ^{20a}C. A. Grob, M. Otha and A. Weiss, Angew. Chem. 70, 343 (1958).
 ^bC. A. Grob et al., Helv. Chim. Acta. 41, 1191 (1958); ^cIbid. 43, 1390 (1960); ^dR. A. Sheldon and J. K. Kochi, Org. Reactions 19, 279 (1972).
- ^{21a}H. H. Westberg and H. J. Dauben, Chem. Ber. 100, 2427 (1967); ^bP. Radlick, R. Klem, S. Spurlock and J. J. Sims, Tetrahedron Letters 5117 (1968).
- ²²R. A. Snow, C. R. Degenhardt and L. A. Paquette, *Ibid.* 4447 (1976).
- ^{23a} A. Dagan, G. S. Shaw, A. Gazit and M. Rabinovitz, Chemistry Letters 1273 (1975); ^bA. Dagan and M. Rabinovitz, Tetrahedron Letters 4529 (1976).
- ²⁴A. Gamliei, I. Willner and M. Rabinovitz, Synthesis 410 (1977).
- ²⁵R. B. Woodward and R. Hoffman, The Conservation of Orbital Symmetry, Academic Press, New York, N.Y., 1970.
- ^{26a} J. Meinwald, G. E. Samuelson, and M. Ikeda, J. Am. Chem. Soc. **92**, 7604 (1970); ^bC. R. Waston, R. M. Pagni, J. R. Blood and J. E. Bloor, *Ibid.* **98**, 2551 (1976); ^cR. M. Pagni and M. Burnett, *Tetrahedron Letters* 163 (1977); ^dW. Metzner and K. Morgenstern, Angew. Chem. **80**, 366 (1968).
- ^{27a} E. Vogel, W. Frass and J. Wolpers, Angew. Chem. 75, 979 (1963); ^bI. Willner and M. Rabinovitz, Tetrehedron Letters 1223 (1976).
- ^{28a}M. Christl, V. Heinemann and W. Kristof, J. Am. Chem. Soc. 97, 2299 (1975); ^bM. J. S. Dewar and S. Kirschner, Ibid. 97, 2131 (1975); ^cSee also: M. Christl, Angew. Chem. Internat, Edit. 13, 208 (1974).
- ^{29a}R. A. Jones, Aldrichimica Acta 9, 35 (1975); ^bJ. Docky, Synthesis 441 (1973); ^cE. V. Dehmlow, Angew. Chem. Inter. Edit. 13, 170 (1974); 16, 493 (1977).
- ^{30a} J. J. Christensen, D. J. Eatough, R. M. Izatt, Chem. Rev. 74, 351 (1974); ^bC. J. Pederson, H. K. Frensdorff, Angew. Chem. 84, 16 (1972); Angew. Chem. Internat. Edit. 11, 16 (1972).
- ³¹H. E. Simmons and R. D. Smith, J. Am. Chem. Soc. 81, 4256 (1959).
- ^{32a}D. S. Wulfmann, Tetrahedron **32**, 1231 (1976); ^bD. S. Wulfmann et al., Ibid. **32**, 1241, 1251, 1257 (1976).
- ^{33a}G. E. Hall and J. P. Ward, Tetrahedron Letters 437 (1965); ^bV. Boekelheide and C. D. Smith, J. Am. Chem. Soc. 88, 3950 (1966).
- ³⁴R Huisgen and G. Juppe, Chem. Ber. 94, 2332 (1961).
- ³⁵W. G. Dauben, A. J. Kielbania and K. N. Raymond, J. Am. Chem. Soc. 95, 7166 (1973).
- ^{36a}G. Boche, D. Martens and W. Danzer, Angew. Chem. 81, 1003 (1969); ^bG. Boche and A. Bieberbach, Tetrahedron Letters 1021 (1976).
- ³⁷Cf. S. S. Hixson and J. Borovsky, J. Am. Chem. Soc. 98, 2840 (1976).