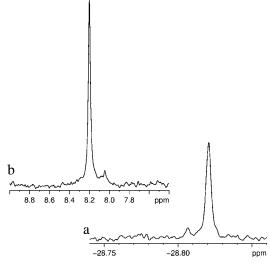


Two Helium Atoms Inside Fullerenes: Probing the Internal Magnetic Field in $C_{60}{}^{6-}$ and $C_{70}{}^{6-}$

Tamar Sternfeld,[†] Roy E. Hoffman,[†] Martin Saunders,[‡] R. James Cross,[‡] M. S. Syamala,[‡] and Mordecai Rabinovitz^{*,†}

Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107

Received February 21, 2002

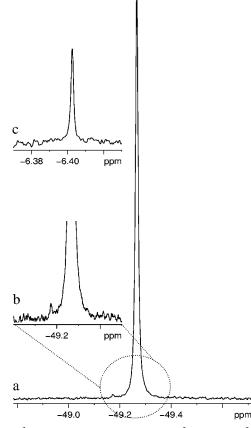

Fullerenes are cage molecules, with cavities large enough to contain the noble gas atoms helium, neon, argon, krypton, and xenon.¹ Recently, it was shown that two helium atoms fit inside C_{70} .² The di-helium compound, He₂@C₇₀, was produced by our high-temperature high-pressure procedure for incorporating atoms, and its presence in a mixture containing both C_{70} and He@C₇₀ was detected by both ³He NMR and MS. The ³He NMR spectrum of this mixture contains two signals, where the chemical shift of ³He₂@C₇₀ is downfield relative to ³He@C₇₀ by $\Delta \delta = 0.014$ (Figure 1a). The ratio between the mono-helium compound, He@C₇₀, and the di-helium compound, He₂@C₇₀, was found to be 20:1. In contrast to the case of C₇₀, no He₂@C₆₀ was observed by ³He NMR or MS.

³He is an excellent NMR nucleus.³ When a helium atom is inside a fullerene cage, the shift compared with the shift of a helium outside the fullerene informs us about the difference in magnetic field between the inside and the outside,^{4,5} due to the diamagnetism of the fullerene. An upfield ³He shift means that the magnetic field intensity is lower inside the fullerene and is associated with overall fullerene diamagnetism and aromaticity. On the other hand, a downfield shift would reflect paramagnetism. The reduction of C₆₀ and C₇₀ to their hexaanions strongly affects their internal magnetic field, by altering their aromatic character,⁶ and produces remarkably large changes in their overall helium shifts.⁷

Because there is ample room in the cage, the helium atoms can move around. The chemical shift is a weighted average of the field at different positions sampled by the helium. When there are two helium atoms inside, their motion is restricted by repulsion keeping them roughly 1.5 Å apart and preventing them from getting to the center. Therefore, the ³He chemical shift of a di-helium compound, as compared to that of a mono-helium compound, can be used as a probe of local magnetic field differences inside the fullerenes.

The purposes of this research are (i) to determine if C_{60} is able to accommodate two endohedral helium atoms, as C_{70} does, and (ii) to study the ³He chemical shifts of endohedral mono- and dihelium atoms inside the reduced fullerenes.

A mixture of He@C₇₀ and He₂@C₇₀ was reduced by lithium metal in the presence of a trace of corannulene to their hexaanions.⁷ The ³He NMR spectrum contains two signals at $\delta = 8.198$ and $\delta = 8.044$, in the ratio of 10:1 (Figure 1b), which are assigned to He@C₇₀⁶⁻ and He₂@C₇₀⁶⁻, respectively. In the hexaanion, the chemical shift difference between the mono-helium and the di-helium signals is 10 times larger than that in the neutral state² and is reversed in sign (Figure 1). The increase in the chemical shift difference between these two ³He peaks suggested that


Figure 1. ³He NMR spectra of the mixture of ${}^{3}\text{He}@C_{70}$ and ${}^{3}\text{He}@C_{70}$ (a) neutral species and (b) hexaanionic species.

reduction of endohedral C60 might make the observation of di-helium inside C60 feasible. Reduction of C60 containing ³He was conducted by the same method as described above. ³He NMR measurements gave the following results: In addition to the signal already known for ${}^{3}\text{He}@\text{C}_{60}{}^{6-}$ at $\delta = -49.266,^{7}$ another signal, about 1% intensity as compared to the main signal, appeared downfield by $\Delta \delta = 0.093$ (Figure 2). The "new" signal consistently appeared in several experiments at different temperatures and was assigned to $\text{He}_2@C_{60}^{6-}$. For the first time, two helium atoms inside C₆₀ could be observed. The spectrum indicates a ratio of 1:200 for $He_2@C_{60}$ and $He@C_{60}$, respectively. The smaller amount of $He_2@C_{60}$, relative to $He_2@C_{70}$, probably results from the smaller cavity of C₆₀, thus accommodating two helium atoms less readily.⁸ The observation of the di-helium chemical shift only in the reduced endohedral C60 suggests that the chemical shift of He2@C60 is very close to that of He@C_{60}, and therefore cannot be observed by $^3\mbox{He}$ NMR spectroscopy. It follows that in the reduced fullerenes, the difference between the signals of the di-helium and the monohelium, of both endohedral C70 and C60, becomes significantly larger than the differences between them in the neutral fullerenes (Table 1), thus suggesting larger magnetic field differences.

In C₆₀, the two helium atoms can reside along any axis inside the fullerene and rapidly attain any location ca. 0.75 Å from the center. Therefore, their chemical shift would represent the average field at 0.75 Å from the center of the symmetrical C₆₀. The neutral C₆₀ has a net low aromatic character.^{5,6} Its calculated magnetic field over most of the volume is uniform;⁹ thus it is not surprising that

^{*} To whom correspondence should be addressed. E-mail: mordecai@vms.huji.ac.il. † The Hebrew University of Jerusalem.

[‡] Yale University.

Figure 2. ³He NMR spectra of the mixture of ³He@C₆₀ and ³He₂@C₆₀. (a) and (b) are the hexaanionic species. (b) Zoom on the di-helium signal. (c) The neutral species, where the di-helium signal was not observed.

 Table 1.
 ³He NMR Chemical Shifts of Endohedral Mono- and Di-helium Fullerenes and Fullerene Hexaanions

	δ ³ He@C _n ^a	δ ³ He ₂ @C _n ^a	$\Delta \delta^b$
C ₆₀	-6.403	-6.403°	0
${ m C_{60} \over { m C_{60}}^{6-}}$	-49.266	-49.173	-0.093
C_{70}^d	-28.821	-28.807	-0.014
C_{70}^{6-}	+8.198	+8.044	+0.154

^{*a*} In ppm, relative to ³He in THF-*d*₈. ^{*b*} (δ^3 He@C_{*n*})–(δ^3 He2@C_{*n*}). ^{*c*} Most probably, the ³He₂ peak is under the main peak; see text. ^{*d*} Consistent with results reported in ref 2.

He₂@C₆₀ seems to have approximately the same ³He chemical shift as He@C₆₀. Reduction of C₆₀ to its hexaanion renders it highly aromatic^{5–7} and decreases the internal magnetic field. The downfield shift of ³He in He₂@C₆₀^{6–} relative to the He@C₆₀^{6–} (Table 1) is in line with calculations. Theoretical calculations by Schleyer and Hommes¹⁰ found that in C₆₀^{6–}, the magnetic field intensity is most strongly reduced in the center, with a predicted helium shift of δ = -56, but becomes less strongly reduced as one moves away from the center. Moving toward a five-membered ring, δ = -56.2 at 0.5 Å and δ = -52.7 at 1 Å. Moving toward a six-membered ring, the corresponding values are δ = -55.8 and δ = -48.6. If one assumes random orientation of the pair of heliums, the averaged peak in the di-helium species would be predicted to go downfield in accordance with the observation (Table 1). Another possibility is that the orientations of the pair of heliums toward the five- and six-membered rings are slightly different in energy. This would perturb the equilibrium between the two orientations and alter the shift. It might be difficult to calculate this energy difference with a high enough accuracy to make a prediction.

 C_{70} has a much higher aromatic character than does C_{60} .^{5–7} The two helium atoms are constrained to reside toward the narrow poles of the cavity, and there is apparently a small gradient in the magnitude of the magnetic field, along the 5-fold axis. The chemical shift of the two helium atoms, which are constrained to be away from each other, and therefore from the center, is slightly shifted downfield; therefore, the magnetic field intensity is evidently lower at the center.⁹

The reduction of C_{70} to its hexaanion clearly increases the magnetic field intensity gradient along the longer axis and reverses it. This means that in C_{70}^{6-} , which is perhaps anti-aromatic in character,^{5–7} the magnetic field gradient is in the opposite direction than in C_{70} , and it decreases from the center toward the poles.¹¹

Acknowledgment. We acknowledge financial support from the Israel Science Foundation (ISF) and the National Science foundation (USA).

References

- Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski, S.; Gross, M. L.; Giblin, D. E.; Poreda, R. J. J. Am. Chem. Soc. 1994, 116, 2193–2194.
- (2) Khong, A.; Jiménez-Vázquez, H. A.; Saunders, M.; Cross, R. J.; Laskin, J.; Peres, T.; Lifshitz, C.; Strongin, R.; Smith, A. B., III. J. Am. Chem. Soc. 1998, 120, 6380–6383.
- (3) Schrobilgen, G. J. In NMR and the Periodic Table; Harris, R. K., Mann, B. E., Eds.; Academic Press: New York, 1976.
- (4) (a) Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski, S.; Freedberg, D. I.; Anet, F. A. L. *Nature* **1994**, *367*, 256–258. (b) Saunders, M.; Cross, R. J.; Jiménez-Vázquez, H. A.; Shimshi, R.; Khong, A. *Science* **1996**, *271*, 1693–1697.
- (5) Calculations of the relation between endohedral chemical shifts and the aromaticity of fullerene: (a) Bühl, M.; Thiel, W.; Jiao, H.; Schleyer, P. v R.; Saunders, M.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 6005–6006. (b) Bühl, M. Chem.-Eur. J. 1998, 4, 734–739 (c) Haddon, R. C.; Pasquarello, A. Phys. Rev. B 1994, 50, 16459–16463. (d) Haddon, R. C. Nature 1995, 378, 249–255. (e) Cioslowski, J. Chem. Phys. Lett. 1994, 227, 361–364.
- (6) Bühl, M.; Hirsch, A. Chem. Rev. 2001, 101, 1153-1184 and references therein.
- (7) Shabtai, E.; Weitz, A.; Haddon, R. C.; Hoffman, R. E.; Rabinovitz, M.; Khong, A.; Cross, R. J.; Saunders, M.; Cheng, P.-C.; Scott, L. T. J. Am. Chem. Soc. 1998, 120, 6389–6393.
- 8) The diameter of C_{60} is 7.0 Å, and those of C_{70} are 6.9 Å, axial, and 7.8 Å, longitudinal (McKenzie, D. R.; Davis, C. A.; Cockayene, D. J. H.; Muller, D. A.; Vassallo, A. M. *Nature* **1992**, *355*, 622–624). The van der Waals radius of a helium atom is 1.5 Å. Another example of the significant difference in the population of endohedral atom in C_{60} and C_{70} , probably as a result of their different size, is the smaller yield of Xe@ C_{60} as compared to Xe@ C_{70} , where xenon is the biggest noble gas that was inserted into fullerene. See ref 1.
- (9) The magnetic field inside C_{60} is practically uniform throughout the interior cavity until one comes quite close to the walls, where there would be local effects. In C_{70} it is nearly homogeneous. This is based on the calculation of He@ C_{60} and He@ C_{70} with correspondingly displaced helium atoms. See ref 5a and Bühl, M.; Wüllen, C. V. *Chem. Phys. Lett.* **1995**, 247, 63–68.
- (10) Private communication from P. v R. Schleyer and N. Hommes.
- (11) Previous studies showed that the added electrons in C₇₀⁶⁻ are mostly concentrated at the fullerene poles (Sternfeld, T.; Hoffman, R. E.; Aprahamian, I.; Rabinovitz, M. Angew. Chem., Int. Ed. 2001, 40, 455–457) and that the 5-MRs at the poles becomes highly aromatic (Sternfeld, T.; Hoffman, R. E.; Thilgen, C.; Diederich, F.; Rabinovitz, M. J. Am. Chem. Soc. 2000, 122, 9038–9039).

JA025990Y