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Protein–protein interactions (PPI) are essential in every step of the HIV replication 
cycle. Mapping the interactions between viral and host proteins is a fundamental 
target for the design and development of new therapeutics. In this review, we focus 
on rational development of anti-HIV-1 peptides based on mapping viral–host and 
viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the 
mechanism of action, specificity and stability of these peptides, which are designed 
to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of 
PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that 
modulate PPI.

Protein–protein interactions in the 
HIV-1 replication cycle
Mapping the interactions between proteins 
derived from host and pathogen origins is 
essential for understanding the molecu-
lar mechanisms of host–pathogen interac-
tions  [1–4]. Protein–protein interactions 
(PPI) play a crucial role in the replication of 
HIV-1  [5–24]. HIV-1 infection results in an 
interplay between viral and host proteins or 
homodimeric/oligomeric viral protein inter-
actions, resulting in a complex interaction 
network between various proteins  [25,26]. 
The HIV-1-Human Protein Interaction 
Database (HHPID) identified 1435 human 
genes encoding 1448 human proteins that 
interact with HIV-1 proteins, resulting in 
2589 unique HIV-1-host protein interac-
tions [27–33]. Thirty two percent of these are 
direct physical interactions as revealed from 
binding studies and 68% are indirect interac-
tions such as upregulation through activation 
of signaling pathways. The database reveals 
that numerous human proteins interact with 
more than one HIV-1 protein. Using a quan-
titative scoring system termed mass spec-
trometric interaction statistics (MiST), 497 
HIV-human PPIs involving 435 individual 
human proteins and 18 viral proteins have 
been identified [25,34–40].

HHPID reports 15 essential HIV-1 pro-
teins [25,31,41–44] (Figures 1 & 2). Three funda-
mental proteins (Gag, Pol, Env) are encoded 
by the HIV-1 genome and they undergo pro-
teolysis to form the mature proteins. Four 
structural proteins, matrix (MA), capsid 
(CA), nucleocapsid (NC) and p6, are prod-
ucts of the proteolysis of Gag. Env proteolysis 
results in the envelope proteins gp120 and 
gp41 [45,46]. Pol encodes three enzymes: pro-
tease (PR), reverse transcriptase (RT) and 
integrase (IN). Encapsulated within the 
virus particle, the three Pol proteins play key 
functions in the viral replication upon infec-
tion. The remaining proteins (Vif, Vpr, Nef, 
Tat, Rev, Vpu) are accessory proteins  [47–50]. 
The database shows 43 different direct inter-
actions of HIV-1 proteins with human pro-
teins based on activity, binding, inhibition, 
cleavage, complexation, modulation, deglyco-
sylation and upregulation. Only a part of these 
interactions are targets for peptide inhibitors 
and will be discussed here (Figure 2).

Peptides as a tool to study PPI
Understanding PPI requires thorough struc-
tural, biophysical and biochemical character-
ization using recombinant proteins. However, 
a major hurdle is the expression and purifica-
tion of the interacting proteins. Some proteins 
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Figure 1. HIV-1 replication cycle with the essential viral proteins highlighted.
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are insoluble or toxic to the expressing host, resulting 
in low yields that hamper structural and quantitative 
studies. Using peptides for these studies provide many 
advantages relative to the recombinant proteins. Pep-
tides derived from the interacting proteins enable deter-
mination of the specific interaction sites, the affinity 
and thermodynamic contribution (enthalpy vs entropy) 
in PPI [51–54]. Chemical synthesis of the peptides makes 
it possible to overcome the expression and purification 
related problems of protein production  [55–57]. This 
makes it technically convenient to study the PPI via 
a full-length protein and a peptide derived from the 
complementary protein in addition to the interaction 
between the two full-length proteins. Peptides derived 
from binding interfaces may bind weaker than the par-
ent protein, partly due to loss of secondary structure. 
Modifications such as post-translational modifications 
(e.g.,  acetylation or phosphorylation)  [58,59], labeling 
(e.g.,  fluorescein or biotin) or incorporation of non-
natural amino acids can be inserted specifically into a 
protein sequence only using chemical peptide synthe-
sis  [60,61]. Peptides are an excellent model for binding 
studies of protein domains. Upon binding, they can 
undergo conformational change mimicking the native 
binding interface  [62,63]. This makes peptides a useful 
tool for discovering drug leads by modulating (either 
activating or inhibiting) PPI [64–70]. In this review, we 

present an overview of peptides derived from PPI from 
different stages of the HIV-1 replication cycle  [71] and 
their implications for anti-HIV-1 drug design.

PART I: interactions between viral & host 
proteins
Interactions between the viral capsid & host 
membrane proteins
The initial contact between the virus and the host cell 
is made between the viral glycoprotein gp120 (originat-
ing from the Env polyprotein, PDB: 3DNL, Figure 3A) 
and the cell surface receptor CD4 [72,73]. CD4 is a host 
glycoprotein expressed on the surface of T helper cells, 
regulatory T cells, macrophages, monocytes and den-
dritic cells. The binding of a highly conserved, nong-
lycosylated region of gp120 to CD4 results in the viral 
insertion into the host membrane [74–76]. Upon associa-
tion with another viral envelope protein, gp41 (PDB: 
2ZFC, Figure 3B), which mediates viral entry through 
membrane fusion, binding to CD4 occurs. This results 
in a conformational change that allows gp120 to bind 
to the coreceptors CCR5 or CXCR4 [77,78]; belonging 
to the family of G protein-coupled receptors and che-
mokine receptors [79–81]. The viral insertion causes an 
additional conformational change in the heptad repeat 
regions (HR1 and HR2) of gp41 [82], resulting in the 
entry of the viral capsid into the host cell via a fusion 



Figure 2. Selected PPI of HIV-1 proteins. (A) An interaction map between direct interactions of HIV-1-proteins (green) 
with human proteins (purple). (B) An interaction map between direct interactions of viral proteins (green). Both the 
interactions are involved in protein–protein interactions that served as basis for developing inhibitory peptides. 
For color images please see online www.future-science.com/doi/full/10.4155/FMC.15.46
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pore  [83]. This leads to the generation of epitopes for 
neutralizing antibodies that prevent chemokine recep-
tor binding [84,85]. Two inhibitors of fusion and entry 
are currently used in the clinic. Approved in 2003, the 
36-mer peptide inhibitor T20 (Enfuvirtide) blocks a 
critical conformational change in gp41 responsible for 
membrane fusion  [86]. Maraviroc is a small molecule 
antiretroviral drug, approved in 2007, which inhibits 
the interaction between gp120 and CCR5 [86].

Peptides derived from HIV-1 Env & host proteins 
interactions
The HIV inhibiting peptide database (HIPdb) reveals 
110 HIV inhibitory peptides that target the interac-
tions of the viral Env proteins. They aim to prevent the 
interactions between the virus and cellular cofactors 
by binding either viral envelope proteins or host pro-
teins [87,88]. Table 1A shows the best HIV-1 inhibitory 
peptide based on the prediction of antigenicity method 
for inhibiting Env proteins. The HIV-1 envelope pro-
tein gp41 fragment peptide (residues 568–588) is 
derived from the N-heptad region of gp41 Env ectodo-
main [89]. It specifically binds the phospholipid mem-
brane thereby inhibiting the viral-cell fusion process. 
Microcalorimetric titrations revealed that a 22-resides 
tyrosine-sulfated peptide (S22 peptide) derived from 
the N-terminus of CCR5 showed a strong interac-
tion with the gp120-CD4 complex with K

d
 = 2.2 μM 

(Table 1B). The process is both entropically and enthal-
pically favorable. No binding was observed between 
the gp120-CD4 complex and an identical peptide 
lacking the sulfated tyrosine residues [90,91].

HIV-1 gp120 & CXCR4 interactions
One of the functions of gp120 is tethering of the 
virus to the cellular co-receptor CXCR4. CXCR4 
binds the bridging sheet and V3 loop of gp120 [92,93]. 
The binding between CXCR4 and gp120 involves a 
conformational rearrangement of gp120. The soluble 
synthetic peptide, CX4-M1, functionally mimics the 
HIV-1 co-receptor CXCR4  [85,94]. The interaction 
interface between gp120 and its cellular co-receptor 
partner CXCR4 is between the V3 loop of gp120 
and the extracellular loops (ECLs) of CXCR4. The 
CX4-M1 peptides are derived from the ECL region 
of CXCR4 from different HIV1 strains and bind-
ing was determined via direct ELISA [95]. The bind-
ing affinities between the peptides and the protein 
were measured by surface plasmon resonance (SPR) 
(Table 1C). To confirm specific binding, CX4-M1 
was competed with a specific antibody, mAb447–
52D, that recognizes the V3 loop of gp120. A peptide 
binding assay with CX4-M1 and V3 loop peptides 

Key terms

gp120: HIV-1 envelope glycoprotein encoded by the 
HIV env gene. The virus entry into cells is anchored by 
gp120. The process is mediated by the binding of gp120, 
which is exposed on the surface of the HIV envelope to 
specific cell surface receptors such as CD4, heparan sulfate 
proteoglycan. The change in the conformation of gp120 
triggers fusion between the viral and host cell membranes.

Integrase: Viral enzyme encoded by HIV-1, which catalyzes 
the integration of the viral cDNA into the host cell genome. 
IN performs two enzymatic activities: 3′-end processing in 
the cytoplasm and strand transfer in the nucleus.



Figure 3. X-ray crystal structures of some HIV-1 proteins. (A) HIV-1 gp120 trimer (PDB: 3DNL) [279]; (B) NTD of HIV-1 
gp41 trimer (PDB: 2ZFC) [280]; and (C) HIV-1 RT with DNA (PDB: 3V4I) [281].
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confirmed that the V3 loop is the crucial part of the 
co-receptor binding site of gp120.

The viral enzyme reverse transcriptase
HIV-1 reverse transcriptase (RT) produces a viral cDNA 
based on the viral RNA (PDB: 3V4I, Figure 3C). The 
DNA is later integrated into the host cell genome [96]. 

RT is a heterodimeric protein with two asymmetric 
chains termed p51 and p66  [97]. HIV-1 RT has three 
main activities: RNA-directed DNA polymerization, 
DNA-directed RNA polymerization and exonuclease 
via degradation of RNA [98]. RT is the target of numer-
ous small molecule antiretroviral drugs used in the 
clinic  [99]. AZT is a Nucleoside analog RT Inhibitor 



Figure 4. Peptides derived from human APOBEC3G.  
(A) Crystal structure of human A3G. The RT-binding 
A3G 65–132 peptide is shown in cyan (PDB:3VOW) [282], 
(B) Crystal structure of APOBEC3G catalytic core 
domain (CCD); the Vif-interactions regions are: A3G 
211–225 (magenta), A3G 263–278 (cyan), A3G 331–345 
(green) and A3G 353–367 (red) (PDB:3IR2) [283]. 
For color images please see online www.future-science.
com/doi/full/10.4155/FMC.15.46
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(NRTI) that acts as a chain terminator of growing 
DNA strand and was approved as an anti-HIV drug 
in 1987. In 1996, Nevirapine was approved as the first 
non-nucleoside RT inhibitor (NNRTI) that inhibits 
the RT polymerization activity.

The HIV-1 RT & A3G interaction
During reverse transcription, the human cytidine deam-
inase APOBEC3G (A3G) eliminates HIV-1 infection 
by inducing deamination of the cytosine residues to 
uracil in the negative viral DNA strand [100–108]. Using 
a cell-based co-immunoprecipitation (coIP) assay, the 
direct interaction of A3G with RT was detected both 
in transfected cells and in the produced viruses. No 
other viral components are needed for this interaction. 
Deletion analysis with a series of T7-tagged RT-dele-
tion mutants (T7-RT1–243, T7-RT1–323 and T7-RT1–439) 
determined that the RT-binding domain is located 
at the N-terminal region of A3G65–132  [101,109,110]. The 
polypeptide A3G65–132 inhibited the interaction between 
A3G and the viral RT (PDB: 3VOW, Figure 4A, 
Table 2A)  [101]. The RT-binding polypeptide inhibited 
the anti-HIV effect of A3G on RT. Competitive coIP 
in cells co-expressing both RT and A3G using sev-
eral A3G derived polypeptides showed that A3G65–132 
significantly disrupted the A3G-RT binding.

Interactions of the HIV-1 integrase
HIV-1 integrase (IN) plays one of the key roles in the viral 
replication cycle by integrating the reverse transcribed 

viral cDNA into the host genome (Figure 1) [111–115]. It 
has three functional domains responsible for integra-
tion process: the N-terminal domain (NTD), the cata-
lytic core domain (CCD) and the C-terminal domain 
(CTD)  [116,117]. IN has two enzymatic activities: first, 
3′-end processing in the cytoplasm [111,118] in which two 
IN dimers [119] bind the long terminal repeats (LTR) of 
the viral DNA and remove a pGT dinucleotide from the 
3′-end of each strand. After nuclear transport  [120,121], 
the strand transfer reaction is carried out by an IN tet-
ramer [122–124] resulting in integration of the viral DNA 
into the host genome. Finally, the single-stranded gaps 

Table 1. Peptides that inhibit viral entry.

PPI Name Sequence Ref.

(A) Env and CD4 interaction HIP962 EINCTRPNNNTRKSIRIQRGPGRAFVTIGKIGNMRQAHCNIS [87,88]

  HIP963 CTRPNNNTRKSIRIQRGPGRAFVTIGKIGNMRQAHC [87,88]

  HIP964 ESVKITCARPYQNTRQRTPIGLGQSLYTTRSRSIIGQAHCNIS [87,88]

  HIP965 EINCTRPNNNTRKSIHIGPGRAFTTGEIIGDIRQAHCNIS [87,88]

  HIP966 ESVVINCTRPNNNTRRRLSIGPGRAFYARRNIIGDIRQAHCNIS [87,88]

  HIP953 WMEWDREINNYTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWFRS [87,88]

  HIP958 YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF [87,88]

  HIP959 YTSLIHSLIEESQNQQEKNEQELLELDKWASLANAA [87,88]

  HIP1016 WMEWDREINNYTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWFR- 
SLTVWGIKQLQARILAVERYLK

[87,88]

(B) gp120 and CCR5 interaction S22 MDYQVSSPIY(SO3
-)DINY(SO3

-)YTSEPSQK [90,91]

(C) gp120 and CXCR4 interaction (ECL1)CX4-M1 (ECL1)97DAVANWYFGNFLCK110 [85,94]

  (ECL2)CX4-M1 (ECL2)182DRYICDRFYPNDLWV196 [85,94]

  (ECL3)CX4-M1 (ECL3) 262DSFILLEIIKQGSEFENTVHK282 [85,94]

  V3 loop of  
HIV-1HxBc2

296CTRPNNNTRKRIRIQRGPGRAFVTIGKIGNMRQAHC331 [92,95]

PPI: Protein–protein interaction.
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between the viral DNA and target DNA are repaired by 
the host DNA repair machinery [125–127]. The equilib-
rium between dimeric and tetrameric IN is of extreme 
importance in the integration process, making it an 
attractive target for drug design  [69]. In 2007, Ralte-
gravir was the first IN inhibitor approved for clinical 
use. Another IN inhibitor, Elvitegravir, was approved 
for clinical use in 2012  [128,129]. Both inhibitors block 
IN by binding directly to the IN-DNA complex formed 
during the integration of the viral DNA into the host 
cell genome [128,129].

Peptides derived from the dimerization 
interface of IN
The dimerization interface of IN is an excellent start-
ing point for peptides that would inhibit dimer forma-
tion [130–132]. Several peptides have been designed (PDB: 
3L3U, Figure 5A, Table 2B) but due to relatively low 
binding affinity to IN, they did not succeed in disrupt-
ing the dimeric IN and hence were not efficient inhibi-

tors. Some of the peptides (IN 95–109, IN 97–108, IN 171–187 
and IN 196–210) showed very mild IC

50
 for both 3′-pro-

cessing and strand transfer in vitro. IN 147–175, which is 
derived from IN, inhibited IN at 600 μM concentration 
by partly blocking the active site. The peptide inhib-
ited the catalytic activity of IN by binding it through 
a protein-peptide coiled-coil structure [130,133–135]. Two 
peptides derived from the α1 and α5 helices of the 
CCD, (INH1 and INH5) specifically bound to the 
dimerization interface of the CCD of IN  [136]. The 
IC

50
 for 3′- processing by INH1 was 250 μM and by 

INH5 was 11 μM. By inhibiting the 3′-endonuclase 
activity of IN with IC

50
 values in the low micromolar 

range, three peptides (α1, α5, α6) also inhibited the IN 
dimerization [137]. The truncated peptide (NL6–5) and 
retro-inverso-peptides (RDNL6, RDNL9) retained the 
inhibitory activity by disrupting the IN dimer and tet-
ramer formation  [138,139] All the peptides were derived 
from the CCD of IN, which is the only domain that 
mediates IN dimerization (Figure 5A) [138,139].

Table 2. Peptides that inhibit the viral enzymes reverse transcriptase and integrase.

PPI Name Sequence Ref.

(A) RT & A3G 
interaction

A3G 65–132 HPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPC- 
TKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQ

[96,101,109,110]

(B) IN dimerization 
interface
 
 
 
 
 
 
 
 
 
 
 
 

IN 93–107(INH1) TGQETAYFLLKLAGK [130–139]

IN 95–109(α1) QETAYFLLKLAGRWP [130–139]

IN97–102(NL6–5) TAYFLL [130–139]

IN 97–108(NL6) TAYFLLKLAGRW [130–139]

RDNL6 wrgalkllfyat† [130–139]

IN 129–139(NL9) ACWWAGIKQEF [130–139]

RDNL9 feqkigawwca† [130–139]

IN 129–139W131A 
(NL9-W3A)

ACAWAGIKQEF [130–139]

IN167–187(INH5) DQAEHLKTAVQMAVFIHNYKA [130–139]

IN 171–187(α5) HLKTAVQMAVFIHNFKR [130–139]

IN 196–210(α6) AGERIVDIIATDIQ [130–139]

IN 196–206(α6S) AGERIVDIIA [130–139]

IN 151–175(K156 E 
G163A D167A)

VESMNEELKKIIAQVRAQAEHLKTAY [130–139]

(B) Cellular partner 
proteins
 
 
 
 

LEDGF/p75 354–378 WIHAEIKNSLKIDNLDVNRCIEALD [69,153–155]

LEDGF/p75 355–377 IHAEIKNSLKIDNLDVNRCIEAL [69,153–155]

LEDGF/p75 361–370 NSLKIDNLDV [69,153–156]

LEDGF/p75 362–369 SLKIDNLD [69,153–155]

LEDGF/p75 402–413 KKIRRFVSQVIM [69,153–156]

(C) Phage display CP64 c(CVSGHPLWCGGGK) [158]

CP65 c(CILGHSDWCGGGK) [158]

†Inverted sequence with d-amino acids.
PPI: Protein–protein interaction.



Figure 5. Peptides derived from domains of HIV-1 integrase. (A) Crystal structure of HIV-1 IN catalytic core domain 
(CCD, beige and green) dimer illustrates the important regions of the IN-dimerization interface from where 
peptides were derived: IN 93–107 (INH1, α1, NL6) (magenta), IN 171–208 (α5, α6, α6s) (magenta) (PDB:3L3U) [284]. 
(B) Crystal structure of dimeric IN CCD and LEDGF/p75 IBD (gray) showing interacting regions: LEDGF/p75 354–378 
(cyan), LEDGF/p75 361–370 (red), LEDGF/p75 402–411 (magenta) [152]. 
For color images please see online www.future-science.com/doi/full/10.4155/FMC.15.46
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Peptides derived from cellular proteins that 
bind IN
Targeting host proteins is risky since it may affect cell 
viability and produce undesired toxicity. Therefore, the 
best strategy is to study the interactions between IN and 
host proteins by finding peptides derived from the IN-
binding region of the cellular proteins. These peptides 
will potentially bind the viral protein and inhibit the 
interaction with less potential for undesired side effects.

The IN-LEDGF/p75 interaction
In addition to binding the viral DNA [140–142], IN inter-
acts strongly with the cellular transcriptional co-factor 
LEDGF/p75  [143]. LEDGF/p75 tethers the IN-DNA 
complex to the host chromatin, where the final integra-
tion steps take place [140,144–151]. The IN-LEDGF/p75 
is a crucial interaction in the replication cycle, making 
it as a fundamental target for anti-HIV drug design.

The structure of IN CCD in complex with the 
LEDGF/p75 IN binding domain (IBD) shows a 
pseudo two-fold symmetry where an IN CCD dimer 
binds two LEDGF/p75 IBD at either side (PDB: 2BJ4, 
Figure 5B) [152]. The IBD interacts with IN via two loops. 
Our lab rationally designed peptides based on these 
loops and shorter variants (LEDGF/p75361–370, LEDGF/
p75402–411)  [69]. All of these bound IN with micromolar 
affinities and inhibited the in vitro enzymatic activities 
both in presence and absence of LEDGF/p75 (Table 2B). 
In addition, these peptides inhibited the integration of 
viral cDNA and HIV-1 replication in infected cells, by 
shifting the IN oligomerization equilibrium toward a 
stable tetramer in the cytosol. Further studies including 
homology modeling, alanine scan and NMR analysis 
revealed that all the residues of LEDGF/p75361–370 and 

LEDGF/p75402–413 are important for optimal binding 
and inhibition of IN (Figure 5B) [69,153–156]. A library of 
cyclic peptides (CPs) derived from LEDGF/p75361–370 
was screened for in vitro IN binding and inhibition [155]. 
One of these peptides, c(MZ4–1) was a potent and sta-
ble inhibitor of IN in vitro. NMR and docking studies 
revealed that c(MZ4–1) possessed a conformation almost 
identical to the parent IN-binding loop from the IBD of 
LEDGF/p75. An AlphaScreen assay with these peptides 
also accounted for IN-LEDGF/p75 interaction [157].

A random peptide phage display strategy was 
adopted to identify a linear peptide, LEDGF/p75325–

530, that bound specifically to the IBD of LEDGF/p75. 
Based on this, small CPs (CP64 and CP65) inhibitors 
of the IN–LEDGF/p75 interaction (IC

50
 for CP64 

is 35.88 μM and IC
50

 for CP65 is 59.89 μM) were 
developed. These peptides inhibited HIV replica-
tion in different cell lines without displaying toxicity 
(Table 2C)  [158]. Saturation transfer difference (STD) 

Key terms

Alanine scan: Screening technique for determining of 
the contribution of specific residues to the function and 
interactions of a protein. Each residue is sequentially 
replaced by alanine and the function/interaction of the 
mutant peptide/protein is compared with the parent 
peptide. Loss of function/interaction means that the 
original residue was important for the binding/activity. 
Alanine is used since it is the simplest chiral residue and 
thus mimic a loss of a side chain without a conformational 
change or an introduction of a new function.

Cyclic peptides: Cyclization improves the pharmacological 
properties of peptides. They are conformationally rigid, 
resistant to protease degradation and in many cases have 
improved affinity and specificity as well as cell penetration 
properties.
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NMR confirmed that the residues in CP64 strongly 
bound to LEDGF/p75 and not to HIV-1 IN.

Stapled peptides that target IN-mediated 
integration & the IN-LEDGF/p75 interaction
Two-domain crystal structures of IN show that the 
two monomers of dimeric IN are tethered via strong 
helix-helix (α1:α5′ and α5:α1′) interactions  [159,160]. 
Using the ‘sequence-walking’ strategy, two potent IN 
inhibitors termed NL6 and NL9  [161] were revealed. 
NL6 has an α-helical structure and is part of the α1 
helical domain. A series of hydrocarbon stapled pep-
tides derived from NL6 (NLH2-NLH16, NLX1, 
NLX2) enhanced interfacial interaction and cell-
permeability compared with the parent NL6 peptide 
through stabilization of the α1 domain  [162] as con-
firmed by CD studies. Increasing the α-helical content 
also increased the IN inhibitory activity at the 3′-pro-
cessing step, inhibition of the strand transfer reaction 
and the IN-LEDGF/p75 interaction, cytoprotective 
activity (EC

50
), cell death activity (CC

50
) and thera-

peutic index (ratio of CC
50

 to EC
50

). Combining pairs 
of α-helical peptides effectively inhibited IN catalytic 
activities. The most active pair was unstapled NLH5 
and stapled NLH6 (IC

50
 values of 9 ±1 μM for 3’-pro-

cessing and 6 ±1 μM for strand transfer  [155]). The 
pairs were designed with a covalent hydrocarbon staple 
spanning i and i + 4 residues that did not show inhibi-
tion in the alanine scan  [163,164]. Most of the stapled 
peptide pairs inhibit the IN-LEDGF/p75 interaction. 
Six peptides (NLH2, NLH3, NLH5, NLH6, NLH15, 
NLH16) inhibited HIV-1 replication in MT-4 cells. 
Fluorescein-tagged NLH6 (termed NLX-1) pen-
etrated cells and inhibited the target IN. MT-4 cells 
showed significant cellular uptake of NLX-1, which 
was localized mainly to the cytoplasm with minimum 
distribution to the nucleus. The cell-permeability and 
enhanced potency of the stapled peptides makes them 
lead IN inhibitors.

Mapping HIV-1 Gag & host cellular proteins 
interactions
HIV-1 Gag is a viral polyprotein expressed during the 
late phase of the replication cycle. Cleavage of Gag by the 
viral PR produces the structural proteins of the mature 
virion: the matrix (MA), capsid (CA) and nucleocapsid 
(NC) proteins. MA is the N-terminus of Gag, followed 
by a CTD termed p6 and two spacer regions that sepa-
rate CA from NC and NC from p6. The Gag products 
take part in viral self-assembly and release of virions 
from the infected cells, thus making it critical for viral 
particle morphogenesis and replication within the liv-
ing cells [165–174]. The maturation inhibitor Bevirimat is 
currently in clinical trials. It targets the Gag protein to 

prevent PR-mediated cleavage at specific Gag sites and 
also binds CA to prevent core formation [175].

The interaction between Gag p6 & human 
Tsg101
HIV-1 p6 is a Gag cleavage product that plays an 
important role in regulating capsid processing, facili-
tating virus budding and incorporation of the viral 
accessory protein R (Vpr) into virions. These pro-
cesses require interactions between the human tumor 
susceptibility gene 101 (Tsg101) protein and the CTD 
of p6  [176]. Tsg101 is a part of the endosomal sorting 
complex required for transport-I (ESCRT-I), which 
assists the ubiquitylation of Gag and facilitates viral 
assembly and budding [177–180]. Successful HIV-1 bud-
ding requires an interaction between the tetrapeptide 
PTAP, derived from residues 3–6 in p6, with the 
ubiquitin E2 variant (UEV) domain of Tsg101 (PDB: 
3OBU, 3OBX, Figure 6). Blocking this interaction 
inhibits virion formation [181–183].

Peptides containing the PTAP motif are potential 
inhibitors of the interaction between Gag p6 and 
Tsg101. A peptide derived from p65–13 bound Tsg101 
(Table 3A) [184]. NMR studies showed that the peptide 
bound to Tsg101 in a groove that interacts with the 
PTAP residues with K

d
 = 3 μM  [177,183]. The struc-

ture showed that binding of E2 ubiquitin-conjugating 
enzymes to UEV domain of Tsg101 was hampered 
upon PTAP binding (Figure 6). Structure activity rela-
tionship (SAR) studies of this peptide, which included 
conversion to P3 polycyclic oxime derivatives in the 
PTAP domain, improved binding to Tsg101 by 15- to 
20-fold [184–186].

To develop effective competitive inhibitors, a tech-
nique for genetically selecting CPs that inhibit specifi-
cally the p6 Gag-Tsg101 interaction was used [187]. This 
technique, called SICLOPPS (split intein-mediated cir-
cular ligation of peptides and proteins), allowed iden-
tification of new CPs that specifically blocked the p6 
Gag-Tsg101 interaction and consequently inhibited HIV 
replication. After several rounds of screening, the selected 
CPs had no resemblance to the original sequence of the 
interacting sites in either p6 Gag or Tsg101. Of these, 
CP11 inhibited the formation of virus-like particles 
(VLP) in cultured cells with IC

50
 of 7μM and showed 

better stability compared with the linear p65–13.

The p6 Gag & cyclophilin interaction
Another partner of p6 Gag is the cellular cyclophilin 
A (CypA) protein, which acts as a prolyl isomerase 
(PPIases). CypA also acts as a molecular chaperone 
and assists protein folding, assembly and transporta-
tion processes. CypA is incorporated into newly bud-
ding particles of HIV-1 and thus can be considered as 



Figure 6. Peptides derived from Tsg101 UEV. (A) Crystal 
structure of the Tsg101 UEV domain (light brown) in 
complex with a HIV-1 Gag P7A mutant p6 5–13 PSAP 
peptide (green) (PDB:30BX) [285]. (B) Crystal structure 
of the Tsg101 UEV domain (blue) in complex with a  
HIV-1 PTAP (5–13) peptide (red) (PDB:30BU) [285]. 
For color images please see online www.future-science.
com/doi/full/10.4155/FMC.15.46
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a key target in future antiretroviral therapy  [188]. p6 
contains a relatively high content of proline residues, 
at positions 5, 7, 10, 11, 24, 30, 37 and 49. Proline cis/
trans isomerism was observed for all these proline resi-
dues and more than 40% of all p6 Gag proteins show 
at least one proline in cis-orientation. 2D proton NMR 
of full length p6 Gag or p6 Gag-derived peptides with 
CypA revealed that it interacts with all proline residues 
of p6 Gag through a prolyl-peptidyl cis-trans isomerase 
(PPIase).

The modulation of HIV-1 p6 function by CypA was 
explored by the synthesis of full length p6 and several 
p6 fragments (p61–14, p61–21, p623–32, p632–42, p643–52 
and p623–52) and by using NMR and Surface Plasmon 
Resonance (SPR) (Table 3A)  [188]. Catalytic amount 
of CypA is sufficient to interact with all the proline 
residues of p61–52 (molar ratio 1: 283; Table 3A) and 
hence PPIases activity in vitro. However, there was low 
affinity binding of CypA to p6 fragments compared 
with binding to full-length p6. Another important 
inhibitor of CypA is cyclosporine A which was found 
to suppress both the production and the release of new 
virions [189,190].

Interactions of HIV-1 Tat
The HIV-1 trans-activator of transcription (Tat) 
protein is a small viral auxiliary protein that con-
tains 101 or 86 residues, depending on the HIV 
strain [191,192]. The Tat protein can be divided into six 
regions: an acidic region (residues 2–11), a cysteine-
rich domain (residues 22–37), the hydrophobic core 
(residues 38–46), a basic region (residues 47–57), 
the glutamine-rich domain (residues 58–72) and 
the RGD motif (residues 72–86)  [193,194]. The basic 
region of Tat binds to the negatively charged mRNA 
in the Tat-activation region (TAR) [195,196]. The bind-
ing of Tat to TAR promotes a prolongation of the 
transcription due to conformational change of the 
TAR during binding of host cell kinases that phos-
phorylate the RNA polymerase II complex. The six 
Arginine residues in Tat47–57 are crucial for Tat-TAR 
recognition [197–200].

The peptide Tat47–57 specifically disrupted the TAR-
RNA recognition by blocking the production of viral 
transcript and also interrupted the formation of two 
cellular cofactors, cyclin T1 and its cognate kinase 
CDK9, responsible for transcriptional elongation 
from the viral long terminal repeat (LTR) [197,198,201–
205]. Increasing the number of Arginine residues on 
the hairpin scaffold of Tat-derived peptides dra-
matically decreased the specificity for binding the 
TAR-RNA. In contrast, fewer Arginine residues in 
a Tat-derived peptide of the same length increased 
the TAR-RNA binding specificity. Arginine-rich Tat 

peptides have a higher resistance to degradation by 
proteases (Table 3B) [197,198,201–205].

The Tat-p53 interaction
The cellular tumor suppressor p53 is a homotetra-
meric transcription factor that induces cell cycle 
arrest or apoptosis upon oncogenic stress [206]. NMR 
and x-ray crystallography revealed that the p53 tet-
ramerization domain (p53 Tet; residues 326–355) 
has a dimer of dimers structure  [207,208]. Depending 
on its concentration, p53 Tet exists in equilibrium 
among different oligomeric forms [209,210]. p53 inhib-
its Tat-mediated LTR transcription  [211]. The viral 
Tat binds p53 Tet as was shown by yeast two-hybrid 
system [209,212]. The CTD of p53 (residues 341–355) 
interacts specifically with the Tat residues 49–57 in 
the arginine-rich motif (ARM) [212]. Tat 73–86 can 
bind p53 with the assistance of cellular proteins such 
as NF-κB and CBP/p300, as observed by in vivo 
experiments [191,213,214].

To quantitatively understand the molecular basis of 
Tat-p53 interaction during HIV-1 replication cycle, 
our laboratory synthesized Tat-derived peptides (Tat1–

35 and Tat47–57) and studied their binding to the p53 
tetramerization domain (Table 3C)  [214]. The binding 
between p53 Tet and Tat47–57 is purely cooperative and 
is temperature-dependent. NMR studies revealed that 
E343 and E349 from p53 Tet are the major Tat47–57 
binding residues. The binding mechanism involves 
electrostatic interactions [214].

The interaction of HIV-Vif with the host 
cellular protein APOBEC3G
The HIV-1 virion infectivity factor (Vif) is required 
for the virus replication  [215,216]. Vif counteracts A3G 
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by targeting it for proteosomal degradation and by 
direct inhibition of its enzymatic activity (PDB: 
3IR2, Figure 4B)  [217]. Both activities involve a direct 

interaction between Vif and A3G and thus their inhi-
bition may rescue the antiviral activity of A3G and 
inhibit HIV-1 propagation  [218–220]. Vif binding to 

Table 3. Peptides derived from interactions between viral (Gag, Tat, Vif and Vpr) and host proteins.

PPI Name Sequence Ref.

(A) Interaction between MA and TCR

Gag p6 and Tsg101 interaction p6 5–13 PSAP peptides PEPTAPPEE [177,183–186]

p6 Gag and CypA interaction p6 1–52 LQSRP5EPTAPPEESFRFGEETTTPSQKQEPIDKELY- 
PLASLRSLFGSDPSSQ

[188–190]

p6-UEV interaction Pep#6 TNWYGSG-W [184–186]

  Pep#8 VLRVHSG-W [184–186]

  Pep#11 IYWNVSG-W [184–186]

  Pep#16 TLLVYSG-W [184–186]

  Pep#112 DGPRGPSTSG-W [184–186]

  Pep#119 GCPFPPSYSG-W [184–186]

  Pep#120 PGPVTPGFSG-W [184–186]

  Pep#122 ARPNRPCRSG-W [184–186]

  Pep#126 LVPWMPRPSG-W [184–186]

  Pep#127 PGPCSPVGSG-W [184–186]

p6 binding p6 1–52 LQSRP5EPTAPPEESFRFGEETTTPSQKQEPIDKELY- 
PLASLRSLFGSDPSSQ

[188–190]

  p6 1–21 LQSRPEPTAPPEESFRFGEET [188–190]

  p6 1–14 LQSRPEPTAPP11EES [188–190]

  p6 23–52 TPSQKQEPIDKELYPLASLRSLFGSDPSSQ [188–190]

  p6 23–32 TPSQKQEPID [188–190]

  p6 32–42 DKELYPLASLR [188–190]

(B) Interactions of Tat with host proteins

Tat derived peptides Tat 47–57 YGRKKRRRQRRR [197,198,200–205]

  AghTat† YG-Agh-KK-Agh-Agh-Agh-Q-Agh-Agh-Agh  

  AgbTat† YG-Agb-KK-Agb-Agb-Agb-Q-Agb-Agb-Agb  

(C) The Tat-p53 interaction

Tat derived peptides Tat 1–35 MEPVDPNLEPWKHPGSQPTTACSNCYCKVCCWHCQ [212–214]

  Tat 47–57 YGRKKRRQRRR [212–214]

  Tat 30–49 CCWHCQLCFLKKGLGISYGK [212–214]

  Tat 56–76 RGPPQGSKDHQTLIPKQPLPQW [212–214]

  Tat 65–80 HQVSLSKQPTSQSRGD [212–214]

  Tat 73–86 PTSQSRGDPTGPKE [212–214]

P53 derived peptides p53 326–355 EYFTLQIRGRERFEMFRELNEALELKDAQA [211–214]

  p53 326–355 R342A EYFTLQIRGRERFEMFAELNEALELKDAQA [211–214]

  p53 326–355 L344P EYFTLQIRGRERFEMFREPNEALELKDAQA [211–214]

  p53 326–355 L344A EYFTLQIRGRERFEMFREANEALELKDAQA [211–214]

  p53 326–355 E346A EYFTLQIRGRERFEMFRELNAALELKDAQA [211–214]

  p53 340–351 MFRELNEALELK [211–214]

†AghTat is (S)-2-Amino-6-guanidinohexanoic acid and AgbTat is (S)-2-Amino-4-guanidinobutyric acid. These are non natural amino acids.
PPI: Protein–protein interaction.
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A3G results in polyubquitination and degradation of 
A3G by forming a E3 ubiquitin ligase complex consist-
ing of ElonginB and C, Cullin5 and RING finger pro-
tein 1 [221,222]. The mutation K128D in A3G abrogated 
the interaction with Vif [223,224].

The peptides Vif14–17, Vif 22–26, Vif40–44 and Vif69–72 
inhibited the A3G-Vif interactions (Table 3D)  [225]. 
Deletion mutagenesis of A3G also showed that 
Vif54–124 and Vif105–156 peptides are critical for the 
interaction  [226]. An in vitro Vif-A3G binding assay 
between GST-tagged Vif and His-tagged A3G and 
a Fluorescence Resonance Energy Transfer (FRET) 
assay between GST-Vif and biotinylated A3G110–148 
confirmed their interactions (Table 3D) [227].

Mapping the Vif-A3G interaction by using peptide 
arrays resulted in defining the precise binding interface 
(Table 3D) [226–229]. A3G bound nine Vif-derived peptides 

from three distinct regions in Vif: residues 8–45 from 
the NTD, residues 154–192 from the CTD contain-
ing the conserved motif 161PPLP164 and a central region 
between residues 83–99 [230,231]. The A3G-derived pep-
tides A3G143–157, A3G211–235 and A3G263–277 bound full-
length Vif and Vif-CTD. The peptide array experiment 
revealed that peptides A3G 31–52, A3G 166–180, A3G 211–225, 
A3G 263–277 and A3G 331–367 also bound to Vif.

The interactions of Vpr with host cellular 
proteins
The viral protein R (Vpr) is the only virion associated reg-
ulatory protein and is not a component of the virus poly-
protein precursors. It assists the nuclear import of the pre-
integration complex (PIC) in nondividing host cells [232]. 
Vpr is crucial for effective HIV-1 infection of target 
CD4+ T cells and macrophages  [233–235]. Vpr interacts 

Table 3. Peptides derived from interactions between viral (Gag, Tat, Vif and Vpr) and host proteins (cont.).

PPI Name Sequence Ref.

(D) Interactions between Vif and host proteins

Vif and A3G interaction Vif 14–17 DRMR [215–231]

  Vif 40–44 YRHHY [215–231]

  A3G 31–45 NTVWLCYEVKTKGPS [215–231]

  A3G 98–112 TFLAEDPKVTLTIFV [215–231]

  A3G 143–157 DGPRATMKIMNYDEF [215–231]

  A3G 166–180 YSQRELFEPWNNLPK [215–231]

  A3G 211–225 WVRGRHETYLCYEVE [215–231]

  A3G 263–277 LDVIPFWKLDLDQDY [215–231]

  A3G 331–345 AGAKISIMTYSEFKH [215–231]

  A3G 353–367 HQGCPFQPWDGLDEH [215–231]

Vif and Cullin5 interaction Hx5Cx17–18Cx3–5H 
(108–139)

LAEDPKVTLTIFVARLYYFWDPDYQEALRSLC [215–222]

(E) Interactions of Vpr

Vpr and CypA interaction Vpr 69–78 FIHFRIGCRH [236,240,241]

  Vpr 75–84 GCRHSRIGVT [236,240,241]

  Vpr 75–90 GCRHSRIGVTRQRRAR [236,240,241]

  Vpr 75–90 (R80A) GCRHSAIGVTRQRRAR [236,240,241]

  Vpr 75–90 (R76Q V83I 
T84I)

GCQHSRIGIIRQRRAR [236,240,241]

  Vpr 75–90 (R76Q V83I 
R80A T84I)

GCQHSAIGIIRQRRAR [236,240,241]

  Vpr 81–90 IGVTRQRRAR [236,240,241]

  Vpr 87–96 RRARNGASRS [236,240,241]

  C45D18 DTWPGVEALIRILQQLLFIHFRIGCQHC [240–242]

  Vpr H1 TLELLEELKNEAVRHFPR [242]

  Vpx H1 EAFDWLDRTVEAINREAVNH [242]

†AghTat is (S)-2-Amino-6-guanidinohexanoic acid and AgbTat is (S)-2-Amino-4-guanidinobutyric acid. These are non natural amino acids.
PPI: Protein–protein interaction.
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with numerous cellular proteins in order to perform its 
nuclear import and G

2
 cell cycle arrest functions.

Interaction between Vpr & CypA
One of the key Vpr interacting protein is cyclophilin A 
(CypA) [236]. Cis-trans prolyl isomerization of the highly 
conserved proline residues in Vpr, such as Pro5, Pro10, 
Pro14 and Pro35, is catalyzed by CypA. SPR experiments 
showed that the heptapeptide CypA 32–38(32RHF-
PRIW38) mediates the binding between CypA and the 
N-terminal region of Vpr [237]. P35A mutation disrupted 
the Vpr-CypA interaction. In the mutant peptide Vpr75–90 
(R80A), the replacement in the C-terminal region of Vpr 
hampered the co-IP of Vpr with CypA [238,239].

The above observations together with the significant 
amount of CypA in the virion [240] led to the design of 
Vpr-based peptides to study the Vpr - CypA interaction 
(Table 3E)  [241,242]. SPR and ITC studies revealed the 
strong binding affinities of C-terminal Vpr75–90 (K

d
 = 

0.28 μM) and N-terminal Vpr30–40 (K
d
 = 1 μM) peptides. 

Other C-terminal Vpr peptides such as Vpr69–78, Vpr75–84, 
Vpr81–90 and Vpr87–96 interacted weakly with CypA. The 
weakest binding response was observed for mutant pep-
tides such as Vpr75–90 R80A (K

d
 = 7.5 μM) and Vpr75–90 

R76Q, V83I, R80A, T841 (K
d
 = 4.7 μM) as compared 

with the wild type peptide. NMR studies revealed that 
the mutations did not influence the secondary structure 
of the C-terminal binding domain of Vpr.

The interaction between Vpr & the WXXF motif 
of host cell proteins
The conserved WXXF motif of uracil-DNA-glycosylase 
mediates the intracellular binding of Vpr with uracil 
DNA glycosylase. Many WXXF-including peptides 
have domain-specific interactions with Vpr. The fusion 
of the WXXF dimer to the chloramphenicol acetyl trans-
ferase (CAT) gene demonstrated that the WXXF dimer-
CAT construct induced CAT activity inside the virions 
through Vpr-dependent docking [243].

Phage display peptide screening predicted that more 
than 90% peptides having consensus motif WXXF effi-
ciently binds Vpr protein [243,244]. Similarly, Vpr binding 
peptides from GST-Vpr panning also revealed a WXXF 
consensus motif [245]. Nine peptides were found to bind 
Vpr (Table 3E) [243].

The Vpr interaction with cell-surface αVβ3 in 
endothelial cells
Vpr targets mitochondrial membranes to trigger apopto-
sis and cell death. The internalization of cyclic RGD in 
endothelial cells for cellular apoptosis is mediated by the 
cell surface receptors α

V
β

3
 integrins. The Vpr induced 

apoptotic cell death involves the interactions of Vpr with 
the voltage-dependent anion channel (VDAC) and the 

adenine nucleotide translocator (ANT)  [246,247]. The 
VDAC and ANT interaction is based on permeability 
transition pore (PTP) as a result of dynamic multiprotein 
complex formation at inner and outer mitochondrial 
membrane contact sites.

A TEAM-VP (Targeted to Endothelial Apoptogenic 
Mitochondrio-active Vpr-derived Peptide) peptide was 
designed based on α

V
β

3
 binding and endothelial apop-

togenic sequences derived from the mitochondria active 
portion of Vpr. TEAM-VP peptide is combined with a 
tumor blood vessel RGD-like ‘homing’ motif and a mito-
chondrial membranes permealization (MMP)-inducing 
sequence. It is composed of the cysteine mediated CP 
sequence GGCRGDMFGC and a Vpr67–82 sequence 
derivative (Table 3E). The cyclic core ‘GGCRGDMFGC’ 
of TEAM-VP specifically bound to VDAC and ANT 
and internalized into α

V
β

3
-expessing cells through its 

cyclic-RGD motif. [248].

PART II: interactions between viral proteins
The Env–MA interaction
The matrix protein p17 (MA) originates from the 
Gag precursor protein, p55gag  [249]. It is N-terminally 
myristylated and binds to the viral inner membrane or 
the inner leaflet of the plasma membrane (PM) of the 
infected cells [250]. MA is involved in nuclear import of 
the viral DNA [251]. A specific interaction between p17 
and Env was revealed by the co-expression of Env pro-
teins that influenced the assembly of Gag particles. The 
membrane-proximal amino terminus of p17 in the Gag 
precursor closely associates with the membrane in the 
mature particle indicating that p17 participates in the 
specific Env incorporation into the viral particles [252].

Several p17 peptides (p17l-12, p1712–29, p1730–52, p1753–

87, p1787–115 and p17115–132), derived from all the six parts 
of p17, were synthesized (Table 4A)  [253,254]. The anti-
genic epitopes was examined for anti-HIV-1 p17 anti-
body (p17 Ab) in the serum of an HIV1 carrier. p17l-12, 
p1712–29, p1730–52 were highly recognized in the serum 
and led to inhibition of virus multiplication as tested 
using ELISA. The purified antibodies obtained from the 
patient using the p17-derivated peptide immunoaffinity 
columns confirmed that the reactivity of p1730–52Ab to 
p17 was the highest among the antibodies.

The Gag–PR interaction
PR cleaves the Gag and Gag-Pol precursors into active 
viral proteins such as p1gag, p2gag, p6gag, p7gag, p17gag and 
p24gag [45,255–257]. The cleavage of the Gag precursors is 
necessary for maturation and HIV-1 infectivity. p2gag is 
an inherent suicidal inhibitor of PR due to its strong in 
vitro inhibition of the proteolytic cleavage of the recom-
binant Gag precursor into functional structural units 
(p17gag and p24gag) [258]. After the viral maturation, p2gag 
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inhibits PR activity in released viral particles and thus 
blocks the autolysis of HIV-1 virions.

PR is one of the most common anti-HIV drug tar-
gets and many FDA approved anti-HIV drugs are PR 
inhibitors  [86,97]. The nonapeptide (AEAMSQVTN) 
derived from the N-terminus of p2gag inhibited HIV-1 
PR activity in vitro to prevent autolysis of the virion after 
sequential processing and reorganization of the virion 
core (Table 4B)  [258]. Further SAR studies with p2gag 
revealed that alanine replacements (M4A and T8A) and 
deletion of Asn9 from the nonamer (AEAMSQVTN) 
decreased the PR inhibitory properties. However, the 
other mutated peptides did not have inhibitory activity.

The Vif–PR interaction
Vif blocks the cleavage activity by directly interacting 
with PR. Vif stably blocks the premature activation of 
PR in cytoplasm, which is circumvented during particle 
assembly [259]. The NTD of Vif (residues 1–96) inhibits 
the PR cleavage in vitro and in bacteria. Both Vif and PR 
are present in the mature virions [260]. Vif regulates PR in 
the virion at the early stage of infection [260]. Several Vif-
derived peptides inhibited PR-mediated cleavage of Gag 
in vitro and during viral protein expression in peripheral 
blood lymphocytes [261]. Vif1–38 and Vif 1–65 and Vif10–96 
peptides were highly stable toward proteolysis. Vif21–65 is 

essential for PR binding and blocking proteolysis 
(Table 4B). Vif21–65  inhibited PR five times better than 
full-length Vif. Vif-derived peptides such as Vif30–65 and 
Vif78–98 specifically inhibited the Vif-PR interaction in 
vitro and blocked the production of viruses in HIV-1-in-
fected cells  [262,263]. Vif88–98 inhibited PR dimerization. 
Two PR-derived peptides PR1–9 and PR94–99 abrogated 
Vif function as an A3G neutralizer and inhibited Vif-PR 
binding in a dose-dependent manner  [264]. This means 
that PR1–9 competed with PR for the Vif binding site.

Vpr interactions with RT & IN
RT, IN and Vpr are in close spatial proximity within 
the PIC, allowing them to interact with each other [265]. 
The interaction between RT and IN involves the single-
stranded viral RNA copied into integration-competent 
double-stranded DNA by RT, DNA polymerase and 
ribonuclease H (RNaseH). Then the PIC is imported 
to nucleus by IN and Vpr for integration [266]. RT and 
IN physically interact with each other and the full-
length Vpr and its isolated CTD can interfere with the 
IN-mediated integration activity in vitro [267].

A library of Vpr-derived peptides was screened for 
their ability to bind directly to RT and IN in vitro and 
to inhibit their enzymatic activities (Table 4B)  [265–267]. 
Dot-blot binding assay showed that the C-terminal Vpr 

Table 4. Peptides derived from interactions between viral proteins.

PPI Name Sequence Ref.

(A) Interaction between Env and MA

 Env and MA p17 l-12 MGARASVLSGGE [253,254]

  p17 12–29 ELDKWEKIRLRPGGKKQY [253,254]

  p17 30–52 KLKHIVWASRELERFAVNPGLLE [253,254]

  p17 53–87 TSEGCRQILGQLQPSLQTGSEELRSLYNTIAVYC [253,254]

  p17 87–115 CVHQRIDVKDTKEALDKIEEEQNKSKKKA [253,254]

  p17 115–132 AAADTGNNSQVSQNY [253,254]

  Env V3 NCTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC [253,254]

(B) Interactions of Protease

Protease and Gag 
interaction
 

p2 gag pep# AEAMSQVTNTATIM [257,258]

Nona p2 gag pep# AEAMSQVTN [257,258]

  p2 gag pep# mutant1 AEAMSQ [257,258]

  p2 gag pep# mutant2 AEAMSQV [257,258]

  p2 gag pep# mutant3 AEAMSQVT [257,258]

  p2 gag pep# mutant4 VTN [257,258]

  p2 gag pep# mutant5 VTNTATIM [257,258]

Protease-Vif 
interaction
 

Vif 21–26 WKSLVK [259–264]

Vif 41–65 RHHYESPHPRISSEVHIPLGDAR [259–264]

PPI: Protein–protein interaction.
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peptides (Vpr57–71 and Vpr61–75) efficiently bound RT and 
IN. Molecular docking of Vpr57–71 into the 3D structure 
of RT and of the two peptides Vpr33–47 and Vpr61–75 into 
the IN CCD were carried out to understand the bio-
chemical effects such as steric hindrance and conforma-
tional changes of the active sites. DNA polymerase as well 
as RNase H activities of RT were significantly inhibited 
by Vpr57–71, Vpr65–79 and Vpr69–83 with IC

50
 values in the 

range of 0.22–2 μM. DNA primer extension by RT was 
also inhibited by Vpr53–67, Vpr57–71, Vpr61–75, Vpr65–79 and 
Vpr69–83. Vpr33–47, Vpr57–71, Vpr61–75 and Vpr65–79 were able 
to abrogate IN strand transfer activity. The three peptides 
Vpr57–71, Vpr61–75 and Vpr65–79 inhibited the 3’-end process-
ing activity of IN whereas the disintegration was blocked 
by Vpr33–47, Vpr69–83, Vpr57–71, Vpr61–75 and Vpr65–79.

Conclusion & future perspective
In this review, we described the PPI in the HIV-1 rep-
lication cycle that are targets for inhibition by peptides 
and from which inhibitory peptides were derived. These 
PPI include both viral–cellular and viral–viral protein 
interactions. Most of the peptides reported are derived 
from viral–host PPI and not from viral–viral PPI, indi-
cating that the host–viral interactions are more promis-
ing drug targets. Current research is focused on devel-
oping peptides libraries based on in vitro and in vivo 
experiments that will be later modified into small mol-
ecule inhibitor. The peptides are discovered using dif-
ferent approaches, and different assays were performed 
to analyze their quantitative or qualitative binding to 
viral proteins and their effect on HIV-1 infectivity.

Peptides do not serve only as tools for studying 
PPI, but have clinical use against HIV. The peptide, 

Fuzeon® (Enfuvirtide) was approved for clinical use 
against HIV  [84–86,268,269]. Current research in anti-
HIV drug design is focused on stabilizing lead peptides 
using different strategies such as cyclization, peptoids 
and more [268–273].

Peptides serve as excellent starting points for the 
design of peptidomimetics and the development of new 
small molecule drug leads based on their sequences and 
conformations. Currently, many of the FDA-approved 
anti-HIV drugs in the clinic, such as Indinavir, Ritona-
vir, Saquinavir and Lopinavir are the result of gradual 
conversion from a peptide to a small molecule [269,274–
278]. These small molecules are mostly peptidomimetic 
hydroxyethylene or hydroxymethylamine HIV-1 pro-
tease inhibitors. Other types of small molecules such 
as ADS-J1, ADS-J2, XTT formazan, NB-2, NB-64, 
AOP-RANTES, PSC-RANTES, Vicriviroc, Mara-
viroc and Aplaviroc are also the outcome of peptido-
mimetic approaches. They act by targeting the HIV-1 
entry through gp120, gp41, CCR5 and CXCR4. This 
approach may be used in the future for other PPI as 
described above.
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Executive summary

•	 Protein–protein interactions (PPI) are essential in every step of the human immunodeficiency virus (HIV) 
replication cycle.

•	 Mapping the interactions between viral and host proteins, as well as between the viral proteins themselves, is 
a fundamental target for the design and development of new therapeutics.

•	 Peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development 
of anti-HIV-1 drug leads that modulate PPI.

•	 These peptides can be later developed into small molecules, which can be used as drugs.
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